Thursday, December 17, 2020
Saturday, December 12, 2020
Remove Sensitive Environment Variable / File That is too Big from Remote Repo
In case mistakenly pushed a large file/sensitive environment data and git rm --cached does not help (pushed to the remote repo but just untracked locally):
git filter-branch --force --index-filter \ "git rm --cached --ignore-unmatch <path to your file>" \ --prune-empty --tag-name-filter cat -- --all(cd to the top level of the repo first), add
-r
flag if you want to remove the whole directory.
REF: https://docs.github.com/.../removing-sensitive-data-from...
This error may subsequently follow:
fatal: refusing to merge unrelated histories
Then
git pull origin the-remote-branch --allow-unrelated-historiesand resolve conflicts.
Friday, December 11, 2020
Examine Output Size in Tensorflow
When we are uncertain the output size of our tensor processed by some layer, we can go through the following:
x = tf.constant([[1, 1., 1., 2., 3.], [1, 1., 4., 5., 6.], [1, 1., 7., 8., 9.], [1, 1., 7., 8., 9.], [1, 1., 7., 8., 9.]]) x = tf.reshape(x, [1, 5, 5, 1]) print(MaxPool2D((5, 5), strides=(2, 2), padding="same")(x)) print(math.ceil(5/2))which yields
print(MaxPool2D((5, 5), strides=(2, 2), padding="same")(x)) tf.Tensor( [[[[7.] [9.] [9.]] [[7.] [9.] [9.]] [[7.] [9.] [9.]]]], shape=(1, 3, 3, 1), dtype=float32)
3For layer that has training weight, we may try the following for testing:
model = Conv2D(3, (3, 3), strides=(2, 2), padding="same", kernel_initializer=tf.constant_initializer(1.)) x = tf.constant([[1., 2., 3., 4., 5.], [1., 2., 3., 4., 5.], [1., 2., 3., 4., 5.], [1., 2., 3., 4., 5.], [1., 2., 3., 4., 5.]]) x = tf.reshape(x, (1, 5, 5, 1)) print(model(x))which yields
x = tf.constant([[1., 2., 3., 4., 5.],... tf.Tensor( [[[[ 6. 6. 6.] [18. 18. 18.] [18. 18. 18.]] [[ 9. 9. 9.] [27. 27. 27.] [27. 27. 27.]] [[ 6. 6. 6.] [18. 18. 18.] [18. 18. 18.]]]], shape=(1, 3, 3, 3), dtype=float32)In fact it can be proved in both MaxPooling2D and Conv2D that if stride $=s$ and padding$=$same, then
\[\text{output_width} = \left\lfloor\frac{\text{input_width}-1}{s}\right\rfloor + 1 = \left\lceil\frac{\text{input_width}}{s}\right\rceil\]
The last equality deserves a proof as it is not highly trivial:
Fact. For any positive intergers $w,s$, we have \[
\left\lfloor \frac{w-1}{s}\right\rfloor + 1 = \left\lceil \frac{w}{s}\right\rceil.
\]
Proof. We do case by case study. If $w=ks$ for some positive $k\in \N$, then
\[\text{LHS} = \left\lfloor k - \frac{1}{s}\right\rfloor +1 = (k-1)+1=k = \lceil k\rceil = \text{RHS}. \]
When $w=ks+j$, for some $k\in\N$ and $j\in \N \cap (0, s)$, then \[
\text{LHS} = \left\lfloor k+\frac{j-1}{s}\right\rfloor + 1 = k+1 = \left\lceil k+\frac{j}{s}\right\rceil = \left\lceil \frac{ks+j}{s}\right\rceil = \left\lceil\frac{w}{s}\right\rceil=\text{RHS}.\qed
\]
Sunday, December 6, 2020
conda virtual environment command
conda create --name tensorflow python=3.7 conda env remove --name tensorflow conda env export --name ENVNAME > envname.yml conda env create --file envname.yml
Subscribe to:
Posts (Atom)