可能有同學問點解我明明已經讀左 math 204 仲要走去讀返 Lebesgue measure 嘅野呢?其實正正係因為讀 204,我發覺有非常大嘅必要去學返好 Lebesgue measure 知識。嚴民教授嘅 math204 課程範圍大得非常之有問題 (個人角度),要我地短時間由少少 Lebesgue measure (少少,係少少,所有引理/命題/定理全部都只係關注有界集),然後證完 Carath$ \text{\'{e}}$odory 就直接跳去 general measure。冇錯我咁樣識左 general measure $ \to$ integration $ \to$ product measure $ \to$ signed measure, Randon-Nykodym,但學得非常之唔實在。單單 Lebesgue measure 仲有好多課題可以講,Borel $ \sigma$-algebra、dense subspace of $ L^p(E)$、Egoroff, Lusin's theorem (我記得變左做 exercise)、approximation of measurable function by simple functions (結合 Lebesgue dominated convergence theorem,解 integration 題目嘅利器)、approximation of measurable set by $ G_\delta,F_\sigma$ (簡單應用:前者可以用返喺 integration;後者可以證 Lipschitz function take measurable set 去 measurable set),等等。好可惜,我喺 204 冇機會學到呢 d 基本野。
而喺我學緊呢 d 基本野嘅同時,有一班 year 1 想搞 workshop,我就即刻諗:「仲唔上馬?」順便 pre 一 present 我解過嘅題 (大部份 presentation problem 嘅來源都係 royden,仲有好多 exercise 我未放落 presentation 到,有 d 係 LCM notes 標住 ``difficult" 嘅問題,有 d 係胡繼善份 notes 嘅題且有 d 答案用左三頁紙,但我有方法只做一頁多少少)。
Workshop 嘅 notes 唔打算 upload 上黎 wordpress 住……,等到改好哂之後,確定冇乜錯漏先再放上黎。
其實呢個假唔單止睇 Royden,有 d American Mathematical Society 出版嘅書都寫得非常之好,我抽左一兩個 topic 黎睇。例如,一年前學左 Randon-Nikodym theorem,前幾日知道佢嘅應用──證明當 $ 1\leq p<\infty$ 時,對於 $ \sigma$-finite 嘅 measure space $ (X,\mu)$,有 $ (L^p(X,\mu))^*=L^q(X,\mu)$,其中 $ q$ 為 $ p$ 的 conjugate。我打算睇睇同樣嘅 theorem 其他書有冇更好嘅證法。Inder K. Rana 所寫嘅 An Introduction To Measure and Integration 都有同樣嘅證法,不過當 $ p>1$ 時佢做多一小步,將結果即刻推廣到任意 measure space $ (X,\mu)$,兩頁紙內證完。
A simple problem for entertainment.
Problem. Let $ f:\mathbb{R} \to \mathbb{R}$ be a continuous function. A point $ x$ is called a shadow point if there exists a point $ y\in \mathbb{R}$ with $y>x$ such that $f(y)>f(x)$. Let $ a<b$ be real numbers and suppose that
- All the points of the open interval $I=(a,b)$ are shadow points;
- $a$ and $b$ are not shadow points.
- $ f(x)\leq f(b)$ for all $ a<x<b$;
- $ f(a)=f(b)$.
Workshop 已暫停兩個星期 (原因係班人要做人口普查),下個星期五開始照常繼續。黎緊兩個星期,一日講返多 d measure,一日開始講 approximation of measurable function,換句話說,Littlewood's 3 principle (我譯為``小木三律" =w=) 其中兩條 。