Sunday, August 14, 2011
Workshop 結束
其實原名為 workshop in real analysis,最後 workshop 講唔到 integration,時間不足。我地有 7 次 meeting,每次用一至一個半鐘黎做 present,10 至 15 分鐘休息及將淨低嘅時間用黎講 notes。每次 workshop 為時三個鐘。已講 topic:
notes 喺每次 workshop 前準備,打下打下都 40 頁 notes。都整得幾辛苦,d theorem 用就用得多,從新 develop 返出黎都幾麻煩。any way 對我黎講得著唔係太多 :),因為 d 野都比較 basic。希望下個 summer 會有人幫我完成埋 integration 果 part 同埋 expand 返第一課嘅野 (compactness, total boundedness, completeness, connectedness, etc)。
notes 喺每次 workshop 前準備,打下打下都 40 頁 notes。都整得幾辛苦,d theorem 用就用得多,從新 develop 返出黎都幾麻煩。any way 對我黎講得著唔係太多 :),因為 d 野都比較 basic。希望下個 summer 會有人幫我完成埋 integration 果 part 同埋 expand 返第一課嘅野 (compactness, total boundedness, completeness, connectedness, etc)。
Thursday, August 11, 2011
無聊之下嘅產物
喺 Royden (4th edition) p.452 有一 Theorem 將 locally compact Hausdorff space 有嘅 property 集埋一齊:
其中證明 (iii) 嘅主要工具係 Urysohn's lemma,但由 Urysohn's lemma 又可推出 Tietze Extension Theorem, 從 (iii) 我地應該可以做得更多。
$ K\subseteq U\subseteq \overline{U}\subseteq V\subseteq \overline{V}\subseteq \mathcal O$.
Now we do our extension, as $ \overline{V}$ is a compact Hausdorff space, $ f$ is continuous (w.r.t. subspace topology) on $ K$, by the Tietze extension theorem there is a $ \mathcal F\in C (\overline{V})$ such that $ \mathcal F|_{K}= f|_K$, we extend $ \mathcal{F}$ on $ X\setminus \overline{V}$ by defining $ \mathcal F|_{X\setminus \overline{V}}\equiv 0$. The change of $ \mathcal F$ between $ \overline{V}$ and $ X\setminus \overline{V}$ may not be continuous, we will try to ``smooth" this transition. As $ K$ is compact and $ U\supseteq K$, by (iii) of theorem 7 there is a $ \psi \in C_c(X)$ such that $ 0\leq \psi \leq 1$, $ \psi=1$ on $ K$ and $ \psi=0$ on $ X\setminus U$. Now we claim that the product of continuous functions $ F:= \mathcal F \cdot \psi$ will do.
Clearly $ \mathop{\mathrm{supp}} F \subseteq \mathop{\mathrm{supp}} \psi$, hence $ F$ has compact support. To show $ F$ is continuous on $ X$ we use the following fact:
When $ |f|\leq M$ on $ K$, we repeat the proof above but that time $ \mathcal F$ can be chosen such that $ |\mathcal F|\leq M$ by the following version of Tietze extension theorem.$\qed$
建立呢種 extension 嘅原因係為左證明 Lusin's theorem on $ (X,\mathcal B(X),\mu)$,其中 $ X$ 為 locally compact Hausdorff,$ B(X)$ 為 Borel $ \sigma$-algebra on $ X$ 及 $ \mu$ 為 Radon measure (Royden's definition: A Borel measure such that Borel set is outer regular and open set is inner regular),我嘅 approach (某習題) 係先證明 Lusin's theorem 對 simple function 成立,從而利用 simple functions $ \{\phi_n\}$, $ \phi_n\to f$ pointwise 及 Egoroff's theorem 及再利用上述 extension 完成證明 (已證明若 $ E\in \mathcal B(X),\mu(E)<\infty$,那麼 $ E$ 是 inner regular)。
**********
Some problem for entertainment:
Problem. Let $ f:\mathbb{R}\to\mathbb{R}$ be a differentiable function so that $ \displaystyle\left|f(x)-\sin(x^2)\right|\le\frac{1}{4}$ for any $ x\in\mathbb{R}$. Prove that there exists a sequence of real numbers $ \{x_n\}_{n=1}^\infty$ for which $ \lim_{n\to\infty} f'(x_n)=+\infty$ .
其中證明 (iii) 嘅主要工具係 Urysohn's lemma,但由 Urysohn's lemma 又可推出 Tietze Extension Theorem, 從 (iii) 我地應該可以做得更多。
Modification of (iii). Let $ X$ be locally compact Hausdorff. If $ \mathcal O$ is a neighborhood of a compact subset $ K$ of $ X$, then the continuous function $ f:K\to \mathbb R$ may be extended to a function $ F\in C_c(X)$ for which $ F$ vanishes outside $ \mathcal O$.Proof. As $ K$ is compact and $ \mathcal O\supseteq K$, by (ii) of theorem 7 above there is an open $ V$ such that $ K\subseteq V\subseteq \overline{V}\subseteq \mathcal O$ with $ \overline{V}$ compact. Once again by (ii) of theorem 7 above there is an open $ U$ such that
If $ f$ is bounded, say $ |f|\leq M$ for some $ M>0$, then the extension above can be chosen so that $ |F|\leq M$ on $ X$.
$ K\subseteq U\subseteq \overline{U}\subseteq V\subseteq \overline{V}\subseteq \mathcal O$.
Now we do our extension, as $ \overline{V}$ is a compact Hausdorff space, $ f$ is continuous (w.r.t. subspace topology) on $ K$, by the Tietze extension theorem there is a $ \mathcal F\in C (\overline{V})$ such that $ \mathcal F|_{K}= f|_K$, we extend $ \mathcal{F}$ on $ X\setminus \overline{V}$ by defining $ \mathcal F|_{X\setminus \overline{V}}\equiv 0$. The change of $ \mathcal F$ between $ \overline{V}$ and $ X\setminus \overline{V}$ may not be continuous, we will try to ``smooth" this transition. As $ K$ is compact and $ U\supseteq K$, by (iii) of theorem 7 there is a $ \psi \in C_c(X)$ such that $ 0\leq \psi \leq 1$, $ \psi=1$ on $ K$ and $ \psi=0$ on $ X\setminus U$. Now we claim that the product of continuous functions $ F:= \mathcal F \cdot \psi$ will do.
Clearly $ \mathop{\mathrm{supp}} F \subseteq \mathop{\mathrm{supp}} \psi$, hence $ F$ has compact support. To show $ F$ is continuous on $ X$ we use the following fact:
Fact. Let $ X=\cup_\alpha X_\alpha$ be a union of open subsets. Then $ f:X\to Y$ is continuous if and only if the restrictions $ f|_{X_\alpha}:X_\alpha \to Y$ are continuous, where $ X_i$ has the subspace topology.
Proof. It follows from the observation that: For any subset $ A$ of $ Y$, $ f^{-1}(A)= \cup_{\alpha} (f|_{X_\alpha})^{-1}(A)$.$\qed$Observe that both $ X_1:=V$ and $ X_2:=X\setminus \overline{U}$ are open, $ X=X_1\cup X_2$. It is enough to argue $ F|_{X_i}$'s are continuous. On $ X_1$, since $ \mathcal F$ is a continuous function on $ \overline{V}$, $ \mathcal F|_V$ is therefore a continuous function on $ V$. And as $ \psi$ is continuous on $ X$, so $ F|_{X_1}$ is continuous. On $ X_2$, since $ \psi|_{X\setminus U}\equiv 0$ $ \implies$ $ \psi|_{X\setminus \overline{U}} \equiv 0$, and thus $ F|_{X\setminus \overline{U}} \equiv 0$, hence $ F|_{X_2}$ is continuous on $ X_2$. We also note that $ F|_{X\setminus \mathcal O}\equiv 0$.
When $ |f|\leq M$ on $ K$, we repeat the proof above but that time $ \mathcal F$ can be chosen such that $ |\mathcal F|\leq M$ by the following version of Tietze extension theorem.$\qed$
建立呢種 extension 嘅原因係為左證明 Lusin's theorem on $ (X,\mathcal B(X),\mu)$,其中 $ X$ 為 locally compact Hausdorff,$ B(X)$ 為 Borel $ \sigma$-algebra on $ X$ 及 $ \mu$ 為 Radon measure (Royden's definition: A Borel measure such that Borel set is outer regular and open set is inner regular),我嘅 approach (某習題) 係先證明 Lusin's theorem 對 simple function 成立,從而利用 simple functions $ \{\phi_n\}$, $ \phi_n\to f$ pointwise 及 Egoroff's theorem 及再利用上述 extension 完成證明 (已證明若 $ E\in \mathcal B(X),\mu(E)<\infty$,那麼 $ E$ 是 inner regular)。
**********
Some problem for entertainment:
Problem. Let $ f:\mathbb{R}\to\mathbb{R}$ be a differentiable function so that $ \displaystyle\left|f(x)-\sin(x^2)\right|\le\frac{1}{4}$ for any $ x\in\mathbb{R}$. Prove that there exists a sequence of real numbers $ \{x_n\}_{n=1}^\infty$ for which $ \lim_{n\to\infty} f'(x_n)=+\infty$ .
Monday, August 1, 2011
見工失敗
前排去左樂善堂余近卿中學面試去做份做八日就賺到五千嘅暑期班,貌似係為考試唔合格嘅學生而設嘅補底班黎 (亦即係我冇乜機會發揮嘅班)。咁好喇我自己又冇乜點見過工,見步行步。去到自我介紹,我講唔夠一分鐘就收口,深知不妙,最終不獲聘收埸。
我估最大原因係我冇乜教學經驗。原因係,首先我係該校校友推薦;其次係請人果位老師係 UST 師姐;再者,我個樣都算平易近人丫...。但間間學校都係以經驗為優先嘅話咁我邊鬼有經驗喎...。同埋我都唔算冇教學經驗,不過對像係班 UG year 1 ...。
我估最大原因係我冇乜教學經驗。原因係,首先我係該校校友推薦;其次係請人果位老師係 UST 師姐;再者,我個樣都算平易近人丫...。但間間學校都係以經驗為優先嘅話咁我邊鬼有經驗喎...。同埋我都唔算冇教學經驗,不過對像係班 UG year 1 ...。
Subscribe to:
Posts (Atom)