Wednesday, October 12, 2011
Classification
最近在 (midterm 前一日) 溫習 midterm 時不忘抽時間完成 MATH511 的 take-home midterm,最近令我痛苦萬分的莫過於 classify 一個給定 order 的 group。我們的 midterm 問題都是從 Artin (2nd edition) 裏抽出來,第 6, 7 課合共 10 題,其中一題就是 classify group of order 33, 18, 20, 30。33 和 30 還好,但對初初起手去做 classification 的我來說, 18 及 20 是一埸悲劇。你要做的,和 classify order 12 (書的其中一個 subsection) 沒兩樣...。
Friday, October 7, 2011
Link:
Chapter 5 不錯看!
http://www.math.ucdavis.edu/~hunter/book/pdfbook.html
作者也有一些 measure theory 的 notes,嗯........,有空才看。
http://www.math.ucdavis.edu/~hunter/book/pdfbook.html
作者也有一些 measure theory 的 notes,嗯........,有空才看。
Sunday, October 2, 2011
note to myself
- For $ 2L$ periodic functions, $ \displaystyle a_n = \frac{1}{L}\int_{-L}^Lf(x)\cos nx\,dx$ for $ \displaystyle n\ge 1$ and $ \displaystyle b_n=\frac{1}{L}\int_{-L}^L f(x)\sin nx\,dx$ for $ \displaystyle n\ge 1$.
- $ \displaystyle\hat f(0)=\frac{a_0}{2}$ and for $ \displaystyle n\ge 1$, $ \displaystyle \hat f(n) = \frac{a_n- i b_n}{2}$, $ \displaystyle \hat f(-n) = \frac{a_n+i b_n}{2}$, which is easily shown by expanding $ \displaystyle \frac{a_0}{2} + \sum_{k=1}^n (a_k\cos kx + b_k\sin kx)$.
where $ \displaystyle \hat f := (\hat f(0),\hat f(1),\hat f(-1),\hat f(2),\hat f(-2),\dots)\in \ell^2$ has the same norm as that of $ \displaystyle f$. Thus we say that the linear map $ \displaystyle f\mapsto \hat f:L^2(\mathbb T)\to \ell^2$ is isometric. Ok, let's prove that this is equivalent to (for real $ f\in L^2[-L,L]$) \[ \displaystyle\frac{1}{2L} \int_{-L}^{L} |f|^2 = \frac{(a_0)^2}{4}+\sum_{n=1}^\infty \frac{a_n^2+b_n^2}{2}.\]
Subscribe to:
Posts (Atom)