\( \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\P}{\mathcal P} \newcommand{\B}{\mathcal B} \newcommand{\F}{\mathbb{F}} \newcommand{\E}{\mathcal E} \newcommand{\brac}[1]{\left(#1\right)} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\matrixx}[1]{\begin{bmatrix}#1\end {bmatrix}} \newcommand{\vmatrixx}[1]{\begin{vmatrix} #1\end{vmatrix}} \newcommand{\lims}{\mathop{\overline{\lim}}} \newcommand{\limi}{\mathop{\underline{\lim}}} \newcommand{\limn}{\lim_{n\to\infty}} \newcommand{\limsn}{\lims_{n\to\infty}} \newcommand{\limin}{\limi_{n\to\infty}} \newcommand{\nul}{\mathop{\mathrm{Nul}}} \newcommand{\col}{\mathop{\mathrm{Col}}} \newcommand{\rank}{\mathop{\mathrm{Rank}}} \newcommand{\dis}{\displaystyle} \newcommand{\spann}{\mathop{\mathrm{span}}} \newcommand{\range}{\mathop{\mathrm{range}}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\innerr}[1]{\left\langle #1 \right \rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\toto}{\rightrightarrows} \newcommand{\upto}{\nearrow} \newcommand{\downto}{\searrow} \newcommand{\qed}{\quad \blacksquare} \newcommand{\tr}{\mathop{\mathrm{tr}}} \newcommand{\bm}{\boldsymbol} \newcommand{\cupp}{\bigcup} \newcommand{\capp}{\bigcap} \newcommand{\sqcupp}{\bigsqcup} \newcommand{\re}{\mathop{\mathrm{Re}}} \newcommand{\im}{\mathop{\mathrm{Im}}} \newcommand{\comma}{\text{,}} \newcommand{\foot}{\text{。}} \)

Sunday, October 2, 2011

note to myself


  • For $  2L$ periodic functions, $  \displaystyle a_n = \frac{1}{L}\int_{-L}^Lf(x)\cos nx\,dx$ for $  \displaystyle n\ge 1$ and $  \displaystyle b_n=\frac{1}{L}\int_{-L}^L f(x)\sin nx\,dx$ for $  \displaystyle n\ge 1$.

  • $  \displaystyle\hat f(0)=\frac{a_0}{2}$ and for $  \displaystyle n\ge 1$, $  \displaystyle \hat f(n) = \frac{a_n- i b_n}{2}$, $  \displaystyle \hat f(-n) = \frac{a_n+i b_n}{2}$, which is easily shown by expanding $  \displaystyle \frac{a_0}{2} + \sum_{k=1}^n (a_k\cos kx + b_k\sin kx)$.
These two translate the general theory to real-valued function. For example, in the theory of fourier series, we know that for each $  f\in L^2(\mathbb T)$, we have \[ \|f\|^2:=(f,f)=\frac{1}{2\pi} \int_0^{2\pi} |f|^2 = \sum_{n\in \mathbb Z}|\hat f(n)|^2=: \|\hat f\|^2.\]

where $  \displaystyle \hat f := (\hat f(0),\hat f(1),\hat f(-1),\hat f(2),\hat f(-2),\dots)\in \ell^2$ has the same norm as that of $  \displaystyle f$. Thus we say that the linear map $  \displaystyle f\mapsto \hat f:L^2(\mathbb T)\to \ell^2$ is isometric. Ok, let's prove that this is equivalent to (for real $  f\in L^2[-L,L]$) \[ \displaystyle\frac{1}{2L} \int_{-L}^{L} |f|^2 = \frac{(a_0)^2}{4}+\sum_{n=1}^\infty \frac{a_n^2+b_n^2}{2}.\]

No comments:

Post a Comment