Processing math: 0%
\newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\P}{\mathcal P} \newcommand{\B}{\mathcal B} \newcommand{\F}{\mathbb{F}} \newcommand{\E}{\mathcal E} \newcommand{\brac}[1]{\left(#1\right)} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\matrixx}[1]{\begin{bmatrix}#1\end {bmatrix}} \newcommand{\vmatrixx}[1]{\begin{vmatrix} #1\end{vmatrix}} \newcommand{\lims}{\mathop{\overline{\lim}}} \newcommand{\limi}{\mathop{\underline{\lim}}} \newcommand{\limn}{\lim_{n\to\infty}} \newcommand{\limsn}{\lims_{n\to\infty}} \newcommand{\limin}{\limi_{n\to\infty}} \newcommand{\nul}{\mathop{\mathrm{Nul}}} \newcommand{\col}{\mathop{\mathrm{Col}}} \newcommand{\rank}{\mathop{\mathrm{Rank}}} \newcommand{\dis}{\displaystyle} \newcommand{\spann}{\mathop{\mathrm{span}}} \newcommand{\range}{\mathop{\mathrm{range}}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\innerr}[1]{\left\langle #1 \right \rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\toto}{\rightrightarrows} \newcommand{\upto}{\nearrow} \newcommand{\downto}{\searrow} \newcommand{\qed}{\quad \blacksquare} \newcommand{\tr}{\mathop{\mathrm{tr}}} \newcommand{\bm}{\boldsymbol} \newcommand{\cupp}{\bigcup} \newcommand{\capp}{\bigcap} \newcommand{\sqcupp}{\bigsqcup} \newcommand{\re}{\mathop{\mathrm{Re}}} \newcommand{\im}{\mathop{\mathrm{Im}}} \newcommand{\comma}{\text{,}} \newcommand{\foot}{\text{。}}

Saturday, December 3, 2011

無聊地想 linear algebra & independent study 的 presentation

大概在上一個星期的 numerical analysis (MATH3312/231) 課 professor 毛毛 提到了一個 fact:
Theorem. Let  A be real  n\times n matrix, then \lim_{n\to\infty}A^n=0\iff\rho(A)<1.
其中當 An\times n real matrix,我們定義 \sigma(A):=\{\lambda\in\mathbb{C}:A-\lambda I\text{ is not inveritble}\}  A 的 spectrum (也就是說  \sigma(A)  A 所有的 eigenvalue)。且定義 spectral radius 為  \rho(A)=\max\{|\lambda|:\lambda \in \sigma(A)\}

上面  \lim_{n\to\infty}A^n=0 可理解為  \lim_{n\to\infty}A^n \mathbf x = 0,\forall \mathbf x\in \mathbb{R}^n。Google 一下 spectral radius 這個字就有以上那個結果的證明,且用到了 Jordan decomposition,當然我有一個更簡單的解 (TA 也確定是正確的證明),不須用到這工具。但看來就是沒有人有興趣~,還有人說這是 trivial 的 (那是一位 applied math 學生),我無言了。

我們現在證明上述定理。可知 (\Rightarrow) 是顯然的,現證 (\Leftarrow)

Proof. It is a well-known result in linear algebra that every matrix can be made into an upper triangular matrix  under a change of basis. That is, by reviewing A as a linear operator from \C^n to \C^n rather than a real matrix, there must be a basis in \C^n so that the matrix of A w.r.t. this basis becomes upper triangular. A simple proof can be found in ALGEBRA written by Michael Artin.

We upper triangularize A  by some P\in GL_n(\C), i.e.,
U:=PAP^{-1}= \begin{bmatrix} \lambda_1& b_{12} &\cdots   &   b_{1n} \\ 0 &\lambda_2& \cdots  &  b_{2n}     \\ 0 & 0 & \ddots  &   \vdots    \\ 0 &0  &    \cdots   &\lambda_n \end{bmatrix}, then U\mathbf e_1=\lambda_1 \mathbf e_1, and U^j \mathbf e_1=\lambda_1^j\mathbf e_1 and hence  |\lambda_1|<1\implies U^k \mathbf e_1\to 0.

We complete the proof by induction, assume there is k\in \N so that
\lim_{j\to\infty} U^j(\mathbf e_1),\dots,\lim_{j\to\infty} U^j(\mathbf e_{k-1})=0. Then since U(\mathbf e_{k})=\sum_{i=1}^{k-1} b_{ik}\mathbf e_i + \lambda_k \mathbf e_k, we have
U^{j+1}(\mathbf e_{k})=\sum_{i=1}^{k-1} b_{ik}U^{j}(\mathbf e_i) + \lambda_k U^j(\mathbf e_k). For a vector v\in \C^n let's denote v^\ell to be its \ell^\text{th} coordinate, then one has
(U^{j+1}(\mathbf e_{k}))^\ell=\sum_{i=1}^{k-1} b_{ik}(U^{j}(\mathbf e_i))^\ell + \lambda_k (U^j(\mathbf e_k))^\ell, this implies
\big|(U^{j+1}(\mathbf e_{k}))^\ell\big|\leq\sum_{i=1}^{k-1} |b_{ik}|\big|(U^{j}(\mathbf e_i))^\ell\big| + |\lambda_k| \big|(U^j(\mathbf e_k))^\ell\big|. By induction hypothesis \lim_{j\to\infty}U^j (\mathbf e_i)=0 for i=1,2,\dots,k-1, one has for any \epsilon>0, there is an N such that j>N\implies \big|(U^{j+1}(\mathbf e_{k}))^\ell\big|<\epsilon+  |\lambda_k| \big|(U^j(\mathbf e_k))^\ell\big|. This actually implies \lim_{k\to\infty} \big|(U^{j+1}(\mathbf e_{k}))^\ell \big|=0 since |\lambda_k|<1. As this is true for \ell=1,2,\dots,n, so \lim_{j\to\infty} U^j(\mathbf e_k)=0.

We conclude by induction that \lim_{j\to\infty} U^j(\mathbf e_k)=0 for k=1,2,\dots, n. Since each vector in \C^n is spanned by \{\mathbf e_i\}_{i=1}^n, we conclude U^j\to 0. Since A^j=P^{-1}U^j P, we conclude A^j\to 0 on \C^n, and of course, on \R^n\subseteq \C^n.\qed

Remark. For the (\Leftarrow) we may also use a famous result in Banach algebra. It is known that the formula of spectral radius of the matrix A is \limn \|A^n\|^{1/n}. So \limn \|A^n\|^{1/n} < 1 implies we can choose r<1 such that there is N\in\N, n>N\implies \|A^n\| < r^n \implies \limn \|A^n\|=0 . Finally for each x\in \R^n, \|A^n x\|\leq \|A^n\| \|x\|, so A^n \to 0 pointwise on \R^n.

話說我在這個 sem 跟 kin li 學 Fourier analysis。初頭也是正正常常地學 fourier series on  \mathbb{R}/\mathbb{Z},其後因為我在修讀的 MATH5111/511 教 finite group representation 的關係,我便開始讀 noncommutative 的 harmonic analysis 了...。最後我的 presentation project 更差點變成 existence of Haar measure on locally compact metrizable group。我其後在想,這和 fourier analysis 關係不太大吧...,便要求只證 existence of Haar measure on compact group,取而代之以 fourier series 的方法 determine  L^2(Q,m)  的 dual,其中  Q\subseteq\mathbb{R} 是 measurable 及  m 是 Lebesgue measure。

No comments:

Post a Comment