\( \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\P}{\mathcal P} \newcommand{\B}{\mathcal B} \newcommand{\F}{\mathbb{F}} \newcommand{\E}{\mathcal E} \newcommand{\brac}[1]{\left(#1\right)} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\matrixx}[1]{\begin{bmatrix}#1\end {bmatrix}} \newcommand{\vmatrixx}[1]{\begin{vmatrix} #1\end{vmatrix}} \newcommand{\lims}{\mathop{\overline{\lim}}} \newcommand{\limi}{\mathop{\underline{\lim}}} \newcommand{\limn}{\lim_{n\to\infty}} \newcommand{\limsn}{\lims_{n\to\infty}} \newcommand{\limin}{\limi_{n\to\infty}} \newcommand{\nul}{\mathop{\mathrm{Nul}}} \newcommand{\col}{\mathop{\mathrm{Col}}} \newcommand{\rank}{\mathop{\mathrm{Rank}}} \newcommand{\dis}{\displaystyle} \newcommand{\spann}{\mathop{\mathrm{span}}} \newcommand{\range}{\mathop{\mathrm{range}}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\innerr}[1]{\left\langle #1 \right \rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\toto}{\rightrightarrows} \newcommand{\upto}{\nearrow} \newcommand{\downto}{\searrow} \newcommand{\qed}{\quad \blacksquare} \newcommand{\tr}{\mathop{\mathrm{tr}}} \newcommand{\bm}{\boldsymbol} \newcommand{\cupp}{\bigcup} \newcommand{\capp}{\bigcap} \newcommand{\sqcupp}{\bigsqcup} \newcommand{\re}{\mathop{\mathrm{Re}}} \newcommand{\im}{\mathop{\mathrm{Im}}} \newcommand{\comma}{\text{,}} \newcommand{\foot}{\text{。}} \)

Wednesday, August 22, 2012

Continue the work before

In this post I have proved the result that \[
\overline{\sin\mathbb{Z}}=\overline{\cos\mathbb{N}}=[-1,1]
\] by purely group theoretical approach. Since I am going to make tutorial notes for the Real Analysis class next semester, I rethink about this problem and further improve the result such that \[
\overline{\sin\mathbb{N}}=[-1,1],
\] based on the findings in that post.

Now by the density we can find intergers $ n_k$ such that $ \sin n_k\to 0$. Let $ p_{k}=|n_k|$, then $ \mathop{\mathrm{sgn}}(n_k) \sin n_k = \sin p_k\to 0$. Pick an $ a\in [-1,1]$, we now show that $a\in \sin \mathbb N$. First of all, there is a sequence of integers $\{h_k\}$ such that $\sin h_k\to a$. Recall the identity that \[\sin x - \sin y = 2\cos \frac{x+y}{2}\sin \frac{x-y}{2},\] we have for each $ k$,  \[
\sin (h_k+2p_i)-\sin h_k=2\cos (h_k+p_i)\sin p_i\to 0 \quad  i\to \infty,\] meaning that $\displaystyle\lim_{i\to\infty}\sin (h_k+2p_i) = \sin h_k$.

Now we are almost done, for each $n\in \mathbb N$, we can find an $ k_n$ such that $ |\sin h_{k_n} -a|<1/n$. Fix this $ k_n$, by the last limit we obtained, we can find an index $  i_n$ such that $  |\sin (h_{k_n}+2p_{i_n})-\sin h_{k_n}|<1/n$ and $  P_n:= h_{k_n}+2p_{i_n} > 0$. Hence \[|\sin P_n-a|\leq |\sin P_n-\sin h_{k_n}|+|\sin h_{k_n} - a|<2/n,\] we conclude $ a\in \overline{\sin \mathbb N}$.

Consequence: The subsequential limits of $  \{\sin n:n\in \mathbb N\}$ are precisely those in $  [-1,1]$.

No comments:

Post a Comment