\( \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\P}{\mathcal P} \newcommand{\B}{\mathcal B} \newcommand{\F}{\mathbb{F}} \newcommand{\E}{\mathcal E} \newcommand{\brac}[1]{\left(#1\right)} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\matrixx}[1]{\begin{bmatrix}#1\end {bmatrix}} \newcommand{\vmatrixx}[1]{\begin{vmatrix} #1\end{vmatrix}} \newcommand{\lims}{\mathop{\overline{\lim}}} \newcommand{\limi}{\mathop{\underline{\lim}}} \newcommand{\limn}{\lim_{n\to\infty}} \newcommand{\limsn}{\lims_{n\to\infty}} \newcommand{\limin}{\limi_{n\to\infty}} \newcommand{\nul}{\mathop{\mathrm{Nul}}} \newcommand{\col}{\mathop{\mathrm{Col}}} \newcommand{\rank}{\mathop{\mathrm{Rank}}} \newcommand{\dis}{\displaystyle} \newcommand{\spann}{\mathop{\mathrm{span}}} \newcommand{\range}{\mathop{\mathrm{range}}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\innerr}[1]{\left\langle #1 \right \rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\toto}{\rightrightarrows} \newcommand{\upto}{\nearrow} \newcommand{\downto}{\searrow} \newcommand{\qed}{\quad \blacksquare} \newcommand{\tr}{\mathop{\mathrm{tr}}} \newcommand{\bm}{\boldsymbol} \newcommand{\cupp}{\bigcup} \newcommand{\capp}{\bigcap} \newcommand{\sqcupp}{\bigsqcup} \newcommand{\re}{\mathop{\mathrm{Re}}} \newcommand{\im}{\mathop{\mathrm{Im}}} \newcommand{\comma}{\text{,}} \newcommand{\foot}{\text{。}} \)

Thursday, November 14, 2013

Record some Problems

In this post I want to record 3 problems:

The following is a problem in GRE math subject test:
Problem 1. Let $\F_p$ be a finite field of order $p$, show that the number of noninvertible $2\times 2$ matrices over $\F_p$ is \[p^4-p^3-p^2+p.\]
Can we generalize to $n\times n$ matrices?

The following is a problem found somewhere by someone in Taiwan's forum, actually I also find this in mainland textbook on real functions:
Problem 2. Let $E,E_1,E_2\subseteq \R$ be such that $E=E_1\cup E_2$. If $E$ is measurable such that \[
m(E)=m^*(E_1)+m^*(E_2)<\infty,
\] show that $E_1$ and $E_2$ are measurable.
HINT: Approximate $E_1,E_2$ from outside by measurable set.
The following is a problem in the midterm exam of Math4061 (fall 2013), which I want to record a simple proof here.
Problem 3. Let $X,Y$ be metric spaces. Suppose that $f:X\to Y$ is a function such that
  • $f$ is 1-1.
  • $K$ compact in $X$ $\implies$ $f(k)$ compact in $Y$.
Prove that $f$ is continuous.
Dr Li's original solution proves by contradiction, I want to give a direct proof using the sequential criterion of continuity for metric spaces.

Solution to Problem 3. Suppose that $x_n\to x$ in $X$, let's prove that $f(x_n)\to f(x)$ in $Y$. First we observe that \[
L:=\{x_n:n\ge 1\}\cup \{x\}
\] is compact. Second we define $g:=f|_{L}:L\to f(L)$ and show that $g^{-1}:f(L)\to L$ is continuous. Indeed, let $K\subseteq L$ be any closed set, since $L$ is compact, so is $K$, and thus \[
f(K)=g(K)=(g^{-1})^{-1}(K)
\] is a compact set, hence closed set, in $Y$ by hypothesis. Therefore any closed set in $L$ is pulled back to a closed set in $f(L)$, $g^{-1}$ is continuous. Since $f(L)$ is compact and $L$ is Hausdorff (as it is a metric space), a standard training in topology enables us to show $g^{-1}$ is a homeomorphism, so $g$ is continuous.

Finally we check that $f(x_n)\to f(x)$. Since $x_n\to x$ in $X$, we have $x_n\to x$ in $L$, so $g(x_n)\to g(x)$ in $f(L)$, but then $f(x_n)=g(x_n)\to g(x)=f(x)$ in $Y$, so we are done.$\qed$

No comments:

Post a Comment