Problem. Let $g\in C[a,b]$ and let $\Lambda:C[a,b]\to \mathbb R$ be a linear function given by \[
\Lambda(f)=\int_a^b f(x)g(x)\,dx.
\] Show that \[
\|\Lambda\|:=\sup\left\{\left|\int_a^b f(x)g(x)\,dx\right|:
f\in C[a,b], \sup_{x\in [a,b]}|f(x)|\leq 1\right\}=\int_a^b |g(x)|\,dx.\]
No comments:
Post a Comment