def HappyModel(input_shape):
X_input = Input(input_shape)
X = ZeroPadding2D((3,3))(X_input)
X = Conv2D(18,(7,7),strides=(1,1),name="conv0")(X)
X = BatchNormalization(axis=3, name="bn0")(X)
X = Activation("relu")(X)
X = MaxPooling2D((2,2), name="max_pool")(X)
X = Flatten()(X)
X = Dense(1,activation="sigmoid", name="fC")(X)
model = Model(input = X_input, outputs = X, name="happy model")
return model
happyModel = HappyModel(X_train.shape[1:])
happyModel.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])
happyModel.fit(x=X_train, y=Y_train,epochs=10, batch_size=20)
preds = happyModel.evaluate(x=X_test,y=Y_test)
img_path = 'images/smile.jpg'
img = image.load_img(img_path, target_size=(64, 64))
imshow(img)
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
print(happyModel.predict(x))
Friday, October 9, 2020
Code Assignment
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment