\( \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\P}{\mathcal P} \newcommand{\B}{\mathcal B} \newcommand{\F}{\mathbb{F}} \newcommand{\E}{\mathcal E} \newcommand{\brac}[1]{\left(#1\right)} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\matrixx}[1]{\begin{bmatrix}#1\end {bmatrix}} \newcommand{\vmatrixx}[1]{\begin{vmatrix} #1\end{vmatrix}} \newcommand{\lims}{\mathop{\overline{\lim}}} \newcommand{\limi}{\mathop{\underline{\lim}}} \newcommand{\limn}{\lim_{n\to\infty}} \newcommand{\limsn}{\lims_{n\to\infty}} \newcommand{\limin}{\limi_{n\to\infty}} \newcommand{\nul}{\mathop{\mathrm{Nul}}} \newcommand{\col}{\mathop{\mathrm{Col}}} \newcommand{\rank}{\mathop{\mathrm{Rank}}} \newcommand{\dis}{\displaystyle} \newcommand{\spann}{\mathop{\mathrm{span}}} \newcommand{\range}{\mathop{\mathrm{range}}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\innerr}[1]{\left\langle #1 \right \rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\toto}{\rightrightarrows} \newcommand{\upto}{\nearrow} \newcommand{\downto}{\searrow} \newcommand{\qed}{\quad \blacksquare} \newcommand{\tr}{\mathop{\mathrm{tr}}} \newcommand{\bm}{\boldsymbol} \newcommand{\cupp}{\bigcup} \newcommand{\capp}{\bigcap} \newcommand{\sqcupp}{\bigsqcup} \newcommand{\re}{\mathop{\mathrm{Re}}} \newcommand{\im}{\mathop{\mathrm{Im}}} \newcommand{\comma}{\text{,}} \newcommand{\foot}{\text{。}} \)

Sunday, August 29, 2010

Confirmed enrollment




Mon

Tue

Wed

Thu

Fri

09:00 - 09:20

MATH321 L1
(1504)

MATH321 L1
(1504)

MATH311 T1C
(2463)

09:30 - 09:50

10:00 - 10:20

10:30 - 10:50

PHYS121 LA2
(6137)

MATH305 L1
(1504)

MATH305 L1
(1504)

11:00 - 11:20

11:30 - 11:50

12:00 - 12:20

MATH315 L1
(4504)

12:30 - 12:50

13:00 - 13:20

LANG208 T12
(5561)

LANG208 T12
(5561)

13:30 - 13:50

PHYS121 L1
(4504)

PHYS121 L1
(4504)

14:00 - 14:20

PHYS121 T1
(2306)

14:30 - 14:50

15:00 - 15:20

MATH315 T1B
(3584)

MATH311 L1
(2465)

MATH311 L1
(2465)

15:30 - 15:50

16:00 - 16:20

16:30 - 16:50

MATH315 L1
(4504)

17:00 - 17:20

17:30 - 17:50

18:00 - 18:20

MATH321 T1A
4620

MATH305 T1A
(4503)

18:30 - 18:50

Saturday, August 14, 2010

Record of some solved inequalities

可嘗試以下問題 (1, 2, 4, 6, 7, 8 都是 AL 知識範圍內),請不要使用暴力的方法 (暴力通分) 解決問題。

Problem 1. Let $  a,b,c>0$ and $  abc=1$. Prove that  \[\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\geq 1.\]
Problem 2. Let $ x,y,z>0$; $  x+y+z=1$ prove that \[\sqrt{\frac{x}{yz}}+\sqrt{\frac{y}{zx}}+\sqrt{\frac{z}{xy}}\ge 2\left(\sqrt{\frac{x}{(x+y)(x+z)}}+\sqrt{\frac{y}{(y+z)(y+x)}}+\sqrt{\frac{z}{(z+x)(z+y)}}\right).\]
以下雖然不難,卻十分漂亮,值得牢記!經驗告訊我 $  ab+bc+ca$ 和 $  a+b+c$ 也是十分常見的因子。

Problem 3. Prove that for any $a,b,c\ge 0$, we always have \[
9(a+b)(b+c)(c+a)\ge 8(a+b+c)(ab+bc+ca)
\] and \[ (a+b+c)(a^{2}+b^{2}+c^{2})+9abc\ge 2(a+b+c)(ab+bc+ca).
\]
Problem 4. When $  a+b+c=3$, $  a,b,c\ge 0$, prove that \[\frac{a+3}{3a+bc}+\frac{b+3}{3b+ca}+\frac{c+3}{3c+ab}\ge 3.\]
Problem 5. Let $ a,b,c>0$, show that \[a^{2}+b^{2}+c^{2}+2abc+1\ge 2(ab+bc+ac).\]
Problem 6. Let $  x,y,z>0$, prove that \[\frac{xy}{x^{2}+y^{2}+2z^{2}}+\frac{yz}{y^{2}+z^{2}+2x^{2}}+\frac{zx}{z^{2}+x^{2}+2y^{2}}\leq\frac{3}{4}.\]
Problem 7. Let $  a,b,c$ be positive real numbers such that $  abc=1$. Prove that \[\frac{1}{a+b^{2}+c^{3}}+\frac{1}{b+c^{2}+a^{3}}+\frac{1}{c+a^{2}+b^{3}}\leq 1.\]
Problem 8. $  a,b,c$ are real positive numbers, prove that \[\frac{ab}{c(c+a)}+\frac{bc}{a(a+b)}+\frac{ca}{b(b+c)} \geq \frac{a}{c+a}+\frac{b}{a+b}+\frac{c}{b+c}.\]

Friday, August 6, 2010

有關 topology 及 D.G. 的 workshop ...

原來這是一個我不應該去的 workshop =.=...。預備知識多,可見到講者很用心澄清每一個數學用語,但這樣便花了大部分時間 ...。到最後我幾乎還未認識甚麼是 manifold :o。

Wednesday, August 4, 2010

Record of solved math202/3-level problems

首兩條的解題方法在 202 我們多次看到,作為回憶從某論壇 copy 下來。

Problem 1. Let $  f:[a,+\infty)\to \mathbb{R}$ a twice differentiable function on the interval $  (a,+\infty)$  with $  \lim_{n\to\infty}f(x)=l\in\mathbb{R}$  and $  |f''(x)|\leq M,\forall x \in [a,+\infty)$. Prove that $  \displaystyle \lim_{x\to\infty}f'(x)=0$.

Problem 2. Let $  f$ be differentiable on $  (a,+\infty)$. If $  \lim_{x\to\infty}\big(f(x)+xf'(x)\ln x\big)=l$, then show that $  \lim_{x\to\infty}f(x)=l$.

以下這一條取自 2010 Department of Mathematics, Graduate School of Science, Kyoto University subjects of tests : Mathematics I

Problem 3*. Let $  f$ be continuous real valued function on $  [0,1]$ and $  f(0)=0, f(1)=1$. Find \[\lim_{n\to\infty}n\int_0^1f(x)x^{2n}\,dx.\]
基本上 $  f(0)=0, f(1)=1$ 是一多餘的 condition。把它們保留下來作為 unknown 可得到一般結果。我想多餘的資料旨在 confuse 解題的人。把 2 換成 $  k$,結果應該差不多!

以下在 analysis section 裏看到這條,可能與 Lagrange multiplier 有關吧。其實只需中學知識。

Problem 4. Let $  x_1,x_2,\dots,x_n$ be positive real number satisfying $  \displaystyle \sum_{k=1}^n\frac{1}{x_k}=n$. Find the minimum of \[
\sum_{k=1}^n\frac{(x_k)^k}{k}.\]
Problem 5. Find $  \displaystyle\lim_{n\to\infty}\left\{n^{2}\left(\int_{0}^{1}\sqrt[n]{1+x^{n}}\,dx-1\right)\right\} $.

Problem 6. Suppose that $  f:\mathbb{R}-\{0,1\}\to \mathbb{R}$ satisfies the equation
$  \displaystyle f(x)+f\left(\frac{x-1}{x}\right)=1+x$, find $  f(x)$.

Problem 7. Let $  f:[0,1]\to\mathbb{R}$ be differentiable on $  [0,1]$ with $  f(1)=0$, show that
$  \displaystyle \lim_{n\to+\infty}n^{2}\int_{0}^{1}f(x)x^{n}\, dx =-f'(1)$.


都是些 202 基本概念便能夠解決的問題。

!!!

Workshop on Differential Topology & Differential Geometry

The workshop would be based on the lecture notes of MATH323 by Prof. Yan Min, MATH305 by Prof. Li Wei-Ping and MATH321 by Prof. Li Wei-Ping & Prof. Hu Jishan. Some review on Linear Algebra will be covered at the beginning.

The workshop would contain some exercises and discussions, the details are as follows:

  • Date: Aug 5, 2010 (Thu) & Aug 6, 2010 (Fri)

  • Time: 1:00pm-4:00pm

  • Venue: Room 3209D (near Lifts 19 & 21, via Room 3209B)

Please contact Hoi (hoien14@gmail.com) for the soft copy of notes above.

Monday, August 2, 2010

今天的星期日生活,有關動漫。

我愛日本漫畫﹕全球化浪潮下 再閱讀日本動漫

【明報專訊】過去幾十年,日本動漫對香港讀者有什麼影響?這個問題,很「通識」,難答,但要急切處理。

通識,是因為多年來,日本動漫在香港累積過百萬讀者,經典動漫如《小甜甜》、《機動戰士》、《美少女戰士》及《鋼之鍊金術師》等亦製造了幾代人的集體回憶;換句話說,日本動漫已紮根港人生活,問動漫對香港讀者的影響,其實自然不過,很「通識」。難答——主流論述動輒把動漫的色情及暴力成分,看成年輕人越軌行為的主因(有媒體就把近日的家庭慘劇和《多啦A夢》掛鹇),而近年亦常把動漫迷等同電車男。這些答案,稍有批判力的人都知道扭曲事實;然而沒有更適切的角度,要另外提供有說服力的答案又很困難。急切——如此「通識」的問題還未有答案,其實要急切處理。