首兩條的解題方法在 202 我們多次看到,作為回憶從某論壇 copy 下來。
Problem 1. Let f:[a,+∞)→R a twice differentiable function on the interval (a,+∞) with limn→∞f(x)=l∈R and |f″. Prove that \displaystyle \lim_{x\to\infty}f'(x)=0.
Problem 2. Let f be differentiable on (a,+\infty). If \lim_{x\to\infty}\big(f(x)+xf'(x)\ln x\big)=l, then show that \lim_{x\to\infty}f(x)=l.
以下這一條取自 2010 Department of Mathematics, Graduate School of Science, Kyoto University subjects of tests : Mathematics I
Problem 3*. Let f be continuous real valued function on [0,1] and f(0)=0, f(1)=1. Find \lim_{n\to\infty}n\int_0^1f(x)x^{2n}\,dx.
基本上 f(0)=0, f(1)=1 是一多餘的 condition。把它們保留下來作為 unknown 可得到一般結果。我想多餘的資料旨在 confuse 解題的人。把 2 換成 k,結果應該差不多!
以下在 analysis section 裏看到這條,可能與 Lagrange multiplier 有關吧。其實只需中學知識。
Problem 4. Let x_1,x_2,\dots,x_n be positive real number satisfying \displaystyle \sum_{k=1}^n\frac{1}{x_k}=n. Find the minimum of
\sum_{k=1}^n\frac{(x_k)^k}{k}.
Problem 5. Find \displaystyle\lim_{n\to\infty}\left\{n^{2}\left(\int_{0}^{1}\sqrt[n]{1+x^{n}}\,dx-1\right)\right\} .
Problem 6. Suppose that f:\mathbb{R}-\{0,1\}\to \mathbb{R} satisfies the equation
\displaystyle f(x)+f\left(\frac{x-1}{x}\right)=1+x, find f(x).
Problem 7. Let f:[0,1]\to\mathbb{R} be differentiable on [0,1] with f(1)=0, show that
\displaystyle \lim_{n\to+\infty}n^{2}\int_{0}^{1}f(x)x^{n}\, dx =-f'(1).
都是些 202 基本概念便能夠解決的問題。
No comments:
Post a Comment