\( \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\P}{\mathcal P} \newcommand{\B}{\mathcal B} \newcommand{\F}{\mathbb{F}} \newcommand{\E}{\mathcal E} \newcommand{\brac}[1]{\left(#1\right)} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\matrixx}[1]{\begin{bmatrix}#1\end {bmatrix}} \newcommand{\vmatrixx}[1]{\begin{vmatrix} #1\end{vmatrix}} \newcommand{\lims}{\mathop{\overline{\lim}}} \newcommand{\limi}{\mathop{\underline{\lim}}} \newcommand{\limn}{\lim_{n\to\infty}} \newcommand{\limsn}{\lims_{n\to\infty}} \newcommand{\limin}{\limi_{n\to\infty}} \newcommand{\nul}{\mathop{\mathrm{Nul}}} \newcommand{\col}{\mathop{\mathrm{Col}}} \newcommand{\rank}{\mathop{\mathrm{Rank}}} \newcommand{\dis}{\displaystyle} \newcommand{\spann}{\mathop{\mathrm{span}}} \newcommand{\range}{\mathop{\mathrm{range}}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\innerr}[1]{\left\langle #1 \right \rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\toto}{\rightrightarrows} \newcommand{\upto}{\nearrow} \newcommand{\downto}{\searrow} \newcommand{\qed}{\quad \blacksquare} \newcommand{\tr}{\mathop{\mathrm{tr}}} \newcommand{\bm}{\boldsymbol} \newcommand{\cupp}{\bigcup} \newcommand{\capp}{\bigcap} \newcommand{\sqcupp}{\bigsqcup} \newcommand{\re}{\mathop{\mathrm{Re}}} \newcommand{\im}{\mathop{\mathrm{Im}}} \newcommand{\comma}{\text{,}} \newcommand{\foot}{\text{。}} \)

Wednesday, August 4, 2010

Record of solved math202/3-level problems

首兩條的解題方法在 202 我們多次看到,作為回憶從某論壇 copy 下來。

Problem 1. Let $  f:[a,+\infty)\to \mathbb{R}$ a twice differentiable function on the interval $  (a,+\infty)$  with $  \lim_{n\to\infty}f(x)=l\in\mathbb{R}$  and $  |f''(x)|\leq M,\forall x \in [a,+\infty)$. Prove that $  \displaystyle \lim_{x\to\infty}f'(x)=0$.

Problem 2. Let $  f$ be differentiable on $  (a,+\infty)$. If $  \lim_{x\to\infty}\big(f(x)+xf'(x)\ln x\big)=l$, then show that $  \lim_{x\to\infty}f(x)=l$.

以下這一條取自 2010 Department of Mathematics, Graduate School of Science, Kyoto University subjects of tests : Mathematics I

Problem 3*. Let $  f$ be continuous real valued function on $  [0,1]$ and $  f(0)=0, f(1)=1$. Find \[\lim_{n\to\infty}n\int_0^1f(x)x^{2n}\,dx.\]
基本上 $  f(0)=0, f(1)=1$ 是一多餘的 condition。把它們保留下來作為 unknown 可得到一般結果。我想多餘的資料旨在 confuse 解題的人。把 2 換成 $  k$,結果應該差不多!

以下在 analysis section 裏看到這條,可能與 Lagrange multiplier 有關吧。其實只需中學知識。

Problem 4. Let $  x_1,x_2,\dots,x_n$ be positive real number satisfying $  \displaystyle \sum_{k=1}^n\frac{1}{x_k}=n$. Find the minimum of \[
\sum_{k=1}^n\frac{(x_k)^k}{k}.\]
Problem 5. Find $  \displaystyle\lim_{n\to\infty}\left\{n^{2}\left(\int_{0}^{1}\sqrt[n]{1+x^{n}}\,dx-1\right)\right\} $.

Problem 6. Suppose that $  f:\mathbb{R}-\{0,1\}\to \mathbb{R}$ satisfies the equation
$  \displaystyle f(x)+f\left(\frac{x-1}{x}\right)=1+x$, find $  f(x)$.

Problem 7. Let $  f:[0,1]\to\mathbb{R}$ be differentiable on $  [0,1]$ with $  f(1)=0$, show that
$  \displaystyle \lim_{n\to+\infty}n^{2}\int_{0}^{1}f(x)x^{n}\, dx =-f'(1)$.


都是些 202 基本概念便能夠解決的問題。

No comments:

Post a Comment