Wednesday, August 4, 2010
Record of solved math202/3-level problems
首兩條的解題方法在 202 我們多次看到,作為回憶從某論壇 copy 下來。
Problem 1. Let $ f:[a,+\infty)\to \mathbb{R}$ a twice differentiable function on the interval $ (a,+\infty)$ with $ \lim_{n\to\infty}f(x)=l\in\mathbb{R}$ and $ |f''(x)|\leq M,\forall x \in [a,+\infty)$. Prove that $ \displaystyle \lim_{x\to\infty}f'(x)=0$.
Problem 2. Let $ f$ be differentiable on $ (a,+\infty)$. If $ \lim_{x\to\infty}\big(f(x)+xf'(x)\ln x\big)=l$, then show that $ \lim_{x\to\infty}f(x)=l$.
以下這一條取自 2010 Department of Mathematics, Graduate School of Science, Kyoto University subjects of tests : Mathematics I
Problem 3*. Let $ f$ be continuous real valued function on $ [0,1]$ and $ f(0)=0, f(1)=1$. Find \[\lim_{n\to\infty}n\int_0^1f(x)x^{2n}\,dx.\]
基本上 $ f(0)=0, f(1)=1$ 是一多餘的 condition。把它們保留下來作為 unknown 可得到一般結果。我想多餘的資料旨在 confuse 解題的人。把 2 換成 $ k$,結果應該差不多!
以下在 analysis section 裏看到這條,可能與 Lagrange multiplier 有關吧。其實只需中學知識。
Problem 4. Let $ x_1,x_2,\dots,x_n$ be positive real number satisfying $ \displaystyle \sum_{k=1}^n\frac{1}{x_k}=n$. Find the minimum of \[
\sum_{k=1}^n\frac{(x_k)^k}{k}.\]
Problem 5. Find $ \displaystyle\lim_{n\to\infty}\left\{n^{2}\left(\int_{0}^{1}\sqrt[n]{1+x^{n}}\,dx-1\right)\right\} $.
Problem 6. Suppose that $ f:\mathbb{R}-\{0,1\}\to \mathbb{R}$ satisfies the equation
$ \displaystyle f(x)+f\left(\frac{x-1}{x}\right)=1+x$, find $ f(x)$.
Problem 7. Let $ f:[0,1]\to\mathbb{R}$ be differentiable on $ [0,1]$ with $ f(1)=0$, show that
$ \displaystyle \lim_{n\to+\infty}n^{2}\int_{0}^{1}f(x)x^{n}\, dx =-f'(1)$.
都是些 202 基本概念便能夠解決的問題。
Problem 1. Let $ f:[a,+\infty)\to \mathbb{R}$ a twice differentiable function on the interval $ (a,+\infty)$ with $ \lim_{n\to\infty}f(x)=l\in\mathbb{R}$ and $ |f''(x)|\leq M,\forall x \in [a,+\infty)$. Prove that $ \displaystyle \lim_{x\to\infty}f'(x)=0$.
Problem 2. Let $ f$ be differentiable on $ (a,+\infty)$. If $ \lim_{x\to\infty}\big(f(x)+xf'(x)\ln x\big)=l$, then show that $ \lim_{x\to\infty}f(x)=l$.
以下這一條取自 2010 Department of Mathematics, Graduate School of Science, Kyoto University subjects of tests : Mathematics I
Problem 3*. Let $ f$ be continuous real valued function on $ [0,1]$ and $ f(0)=0, f(1)=1$. Find \[\lim_{n\to\infty}n\int_0^1f(x)x^{2n}\,dx.\]
基本上 $ f(0)=0, f(1)=1$ 是一多餘的 condition。把它們保留下來作為 unknown 可得到一般結果。我想多餘的資料旨在 confuse 解題的人。把 2 換成 $ k$,結果應該差不多!
以下在 analysis section 裏看到這條,可能與 Lagrange multiplier 有關吧。其實只需中學知識。
Problem 4. Let $ x_1,x_2,\dots,x_n$ be positive real number satisfying $ \displaystyle \sum_{k=1}^n\frac{1}{x_k}=n$. Find the minimum of \[
\sum_{k=1}^n\frac{(x_k)^k}{k}.\]
Problem 5. Find $ \displaystyle\lim_{n\to\infty}\left\{n^{2}\left(\int_{0}^{1}\sqrt[n]{1+x^{n}}\,dx-1\right)\right\} $.
Problem 6. Suppose that $ f:\mathbb{R}-\{0,1\}\to \mathbb{R}$ satisfies the equation
$ \displaystyle f(x)+f\left(\frac{x-1}{x}\right)=1+x$, find $ f(x)$.
Problem 7. Let $ f:[0,1]\to\mathbb{R}$ be differentiable on $ [0,1]$ with $ f(1)=0$, show that
$ \displaystyle \lim_{n\to+\infty}n^{2}\int_{0}^{1}f(x)x^{n}\, dx =-f'(1)$.
都是些 202 基本概念便能夠解決的問題。
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment