Saturday, August 14, 2010

Record of some solved inequalities

可嘗試以下問題 (1, 2, 4, 6, 7, 8 都是 AL 知識範圍內),請不要使用暴力的方法 (暴力通分) 解決問題。

Problem 1. Let a,b,c>0 and abc=1. Prove that  aa+b+1+bb+c+1+cc+a+11.

Problem 2. Let x,y,z>0; x+y+z=1 prove that xyz+yzx+zxy2(x(x+y)(x+z)+y(y+z)(y+x)+z(z+x)(z+y)).

以下雖然不難,卻十分漂亮,值得牢記!經驗告訊我 ab+bc+caa+b+c 也是十分常見的因子。

Problem 3. Prove that for any a,b,c0, we always have 9(a+b)(b+c)(c+a)8(a+b+c)(ab+bc+ca)
and (a+b+c)(a2+b2+c2)+9abc2(a+b+c)(ab+bc+ca).

Problem 4. When a+b+c=3, a,b,c0, prove that a+33a+bc+b+33b+ca+c+33c+ab3.

Problem 5. Let a,b,c>0, show that a2+b2+c2+2abc+12(ab+bc+ac).

Problem 6. Let x,y,z>0, prove that xyx2+y2+2z2+yzy2+z2+2x2+zxz2+x2+2y234.

Problem 7. Let a,b,c be positive real numbers such that abc=1. Prove that 1a+b2+c3+1b+c2+a3+1c+a2+b31.

Problem 8. a,b,c are real positive numbers, prove that abc(c+a)+bca(a+b)+cab(b+c)ac+a+ba+b+cb+c.


No comments:

Post a Comment