Problem 1. Let a,b,c>0 and abc=1. Prove that aa+b+1+bb+c+1+cc+a+1≥1.
Problem 2. Let x,y,z>0; x+y+z=1 prove that √xyz+√yzx+√zxy≥2(√x(x+y)(x+z)+√y(y+z)(y+x)+√z(z+x)(z+y)).
以下雖然不難,卻十分漂亮,值得牢記!經驗告訊我 ab+bc+ca 和 a+b+c 也是十分常見的因子。
Problem 3. Prove that for any a,b,c≥0, we always have 9(a+b)(b+c)(c+a)≥8(a+b+c)(ab+bc+ca)
and (a+b+c)(a2+b2+c2)+9abc≥2(a+b+c)(ab+bc+ca).
Problem 4. When a+b+c=3, a,b,c≥0, prove that a+33a+bc+b+33b+ca+c+33c+ab≥3.
Problem 5. Let a,b,c>0, show that a2+b2+c2+2abc+1≥2(ab+bc+ac).
Problem 6. Let x,y,z>0, prove that xyx2+y2+2z2+yzy2+z2+2x2+zxz2+x2+2y2≤34.
Problem 7. Let a,b,c be positive real numbers such that abc=1. Prove that 1a+b2+c3+1b+c2+a3+1c+a2+b3≤1.
Problem 8. a,b,c are real positive numbers, prove that abc(c+a)+bca(a+b)+cab(b+c)≥ac+a+ba+b+cb+c.
No comments:
Post a Comment