\( \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\P}{\mathcal P} \newcommand{\B}{\mathcal B} \newcommand{\F}{\mathbb{F}} \newcommand{\E}{\mathcal E} \newcommand{\brac}[1]{\left(#1\right)} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\matrixx}[1]{\begin{bmatrix}#1\end {bmatrix}} \newcommand{\vmatrixx}[1]{\begin{vmatrix} #1\end{vmatrix}} \newcommand{\lims}{\mathop{\overline{\lim}}} \newcommand{\limi}{\mathop{\underline{\lim}}} \newcommand{\limn}{\lim_{n\to\infty}} \newcommand{\limsn}{\lims_{n\to\infty}} \newcommand{\limin}{\limi_{n\to\infty}} \newcommand{\nul}{\mathop{\mathrm{Nul}}} \newcommand{\col}{\mathop{\mathrm{Col}}} \newcommand{\rank}{\mathop{\mathrm{Rank}}} \newcommand{\dis}{\displaystyle} \newcommand{\spann}{\mathop{\mathrm{span}}} \newcommand{\range}{\mathop{\mathrm{range}}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\innerr}[1]{\left\langle #1 \right \rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\toto}{\rightrightarrows} \newcommand{\upto}{\nearrow} \newcommand{\downto}{\searrow} \newcommand{\qed}{\quad \blacksquare} \newcommand{\tr}{\mathop{\mathrm{tr}}} \newcommand{\bm}{\boldsymbol} \newcommand{\cupp}{\bigcup} \newcommand{\capp}{\bigcap} \newcommand{\sqcupp}{\bigsqcup} \newcommand{\re}{\mathop{\mathrm{Re}}} \newcommand{\im}{\mathop{\mathrm{Im}}} \newcommand{\comma}{\text{,}} \newcommand{\foot}{\text{。}} \)

Thursday, November 4, 2010

Just for fun

Some one ask me to count the number of element in the set $  \{\sigma\in S_5:|\sigma|=2\}$, after doing that I follow the same idea to count $  |\{\sigma\in S_n:|\sigma|=2\}|$, and a step further I count $  |\{\sigma\in S_n:|\sigma|=p\}|$, $  p\leq n$, and I get \[\sum_{k=1}^{[\frac{n}{p}]}\frac{\big((p-1)!\big)^{k}}{(k)!}\prod_{r=0}^{k-1}\binom{n-pr}{p}.\]

The result is summarized in the following document (I hope the result is true):
http://ihome.ust.hk/~cclee/document/sthgen.pdf

To ``verify" the result, let's count $  L(n,3)$ in another way, we count this by considering $  a_n$ defined by
\[a_n=\frac{1}{3}\times \underbrace{\binom{n}{2}}_{\text{choose 2 elements}\atop \text{to form permutation}}\underbrace{\binom{2}{1}}_{\text{choose 1 of the first two}\atop\text{ chosen numbers}}\underbrace{\binom{n-2}{1}}_{\text{choose another 1 to form permutation}\atop\text{with the number in 2C1 }}.\]

The factor $  \frac{1}{3}$ is left there becasue we observe that every length 3 permutation can be written as product of 2 transpositions in exactly 3 ways.

Then clearly the number of ways to form order $  3$ permutation by multiplying $  k$ disjoint length 3 cycles is given by \[ \frac{\prod_{r=0}^{k-1}a_{n-3r}}{(k)!}=\frac{2^{k}}{(k)!}\prod_{r=0}^{k-1}\binom{n-3r}{3},
\] exactly the same summand appear.

No comments:

Post a Comment