\( \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\P}{\mathcal P} \newcommand{\B}{\mathcal B} \newcommand{\F}{\mathbb{F}} \newcommand{\E}{\mathcal E} \newcommand{\brac}[1]{\left(#1\right)} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\matrixx}[1]{\begin{bmatrix}#1\end {bmatrix}} \newcommand{\vmatrixx}[1]{\begin{vmatrix} #1\end{vmatrix}} \newcommand{\lims}{\mathop{\overline{\lim}}} \newcommand{\limi}{\mathop{\underline{\lim}}} \newcommand{\limn}{\lim_{n\to\infty}} \newcommand{\limsn}{\lims_{n\to\infty}} \newcommand{\limin}{\limi_{n\to\infty}} \newcommand{\nul}{\mathop{\mathrm{Nul}}} \newcommand{\col}{\mathop{\mathrm{Col}}} \newcommand{\rank}{\mathop{\mathrm{Rank}}} \newcommand{\dis}{\displaystyle} \newcommand{\spann}{\mathop{\mathrm{span}}} \newcommand{\range}{\mathop{\mathrm{range}}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\innerr}[1]{\left\langle #1 \right \rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\toto}{\rightrightarrows} \newcommand{\upto}{\nearrow} \newcommand{\downto}{\searrow} \newcommand{\qed}{\quad \blacksquare} \newcommand{\tr}{\mathop{\mathrm{tr}}} \newcommand{\bm}{\boldsymbol} \newcommand{\cupp}{\bigcup} \newcommand{\capp}{\bigcap} \newcommand{\sqcupp}{\bigsqcup} \newcommand{\re}{\mathop{\mathrm{Re}}} \newcommand{\im}{\mathop{\mathrm{Im}}} \newcommand{\comma}{\text{,}} \newcommand{\foot}{\text{。}} \)

Sunday, November 30, 2014

Record a problem

office 某人問我以下一條從 probability 書抽出來的 exercise:
Problem. Suppose that $\{c_{jn}\in \R: j\leq n, n=1,2,3,\dots \}$ satisfies $\dis \lim_{n\to \infty}\sum_{j=1}^n c_{jn}=\lambda$ and $\dis \limn \max_{1\leq j\leq n}|c_{jn}|=0$, prove that \[ \limn \prod_{j=1}^n  (1+c_{jn})=e^\lambda=\exp \brac{
\lim_{n\to \infty}\sum_{j=1}^n c_{jn}}.\]  
不難的,可作為不錯的 Math2033 exercise。 這 identiy 告訴我們只要知道 $\limn\sum_{j=1}^n c_{jn}$ 就可以計算相關的 infinite product。當 $c_{jn}$ 與 $j$ 無關時相信是 elementary analysis 裏非常 standard 的 exercise。齊來取一些 numerical example 看看能否得到有趣的 identity。

  • $c_{jn}=1/n\implies \dis \limn \prod_{j=1}^n  \bigg(1+\frac{1}{n}\bigg)=\limn \bigg(1+\frac{1}{n}\bigg)^n=e$
  • If $p> 1$, $\dis c_{jn} = 1/n^p\implies \limn \prod_{j=1}^n \bigg(1+\frac{1}{n^p}\bigg) = \limn \bigg(1+\frac{1}{n^p}\bigg)^n=e^{\limn\frac{1}{n^{p-1}}}=1$
  • $\dis c_{jn}= \frac{j^k}{n^{k+1}} \implies \dis \limn \prod_{j=1}^n \bigg(1+ \frac{j^k}{n^{k+1}}\bigg)=\exp \bigg(\limn \frac{\sum_{j=1}^n j^k}{n^{k+1}}\bigg)=e^{1/(k+1)}$
  • $\dis c_{jn} = B_n \times \int_{j-1}^j f(x)\,dx$, then \[ \limn \prod_{j=1}^n \bigg(1+B_n \int_{j-1}^j f(x)\,dx \bigg) =\exp \brac{\limn B_n\int_0^n f(x)\,dx},\] in particular, if we take $B_n =(\int_{j-1}^j f(x)\,dx )^{-1}$, then \[ \max_{1\leq j\leq n}\left| \frac{\int_{j-1}^j f(x)\,dx}{\int_0^n f(x)\,dx} \right|\to 0\implies \limn \prod_{j=1}^n \bigg(1+\frac{\int_{j-1}^j f(x)\,dx}{\int_0^n f(x)\,dx} \bigg)  = e. \]
  • Many examples of infinite products converge to $1$.

No comments:

Post a Comment