Processing math: 100%

Sunday, November 30, 2014

Record a problem

office 某人問我以下一條從 probability 書抽出來的 exercise:
Problem. Suppose that {cjnR:jn,n=1,2,3,} satisfies limnnj=1cjn=λ and limnmax1jn|cjn|=0, prove that limnnj=1(1+cjn)=eλ=exp(limnnj=1cjn).  
不難的,可作為不錯的 Math2033 exercise。 這 identiy 告訴我們只要知道 limnnj=1cjn 就可以計算相關的 infinite product。當 cjnj 無關時相信是 elementary analysis 裏非常 standard 的 exercise。齊來取一些 numerical example 看看能否得到有趣的 identity。

  • cjn=1/nlimnnj=1(1+1n)=limn(1+1n)n=e
  • If p>1, cjn=1/nplimnnj=1(1+1np)=limn(1+1np)n=elimn1np1=1
  • cjn=jknk+1limnnj=1(1+jknk+1)=exp(limnnj=1jknk+1)=e1/(k+1)
  • cjn=Bn×jj1f(x)dx, then limnnj=1(1+Bnjj1f(x)dx)=exp(limnBnn0f(x)dx), in particular, if we take Bn=(jj1f(x)dx)1, then max1jn|jj1f(x)dxn0f(x)dx|0limnnj=1(1+jj1f(x)dxn0f(x)dx)=e.
  • Many examples of infinite products converge to 1.

No comments:

Post a Comment