office 某人問我以下一條從 probability 書抽出來的 exercise:
Problem. Suppose that {cjn∈R:j≤n,n=1,2,3,…} satisfies limn→∞n∑j=1cjn=λ and limn→∞max1≤j≤n|cjn|=0, prove that limn→∞n∏j=1(1+cjn)=eλ=exp(limn→∞n∑j=1cjn).
不難的,可作為不錯的 Math2033 exercise。 這 identiy 告訴我們只要知道
limn→∞∑nj=1cjn 就可以計算相關的 infinite product。當
cjn 與
j 無關時相信是 elementary analysis 裏非常 standard 的 exercise。齊來取一些 numerical example 看看能否得到有趣的 identity。
- cjn=1/n⟹limn→∞n∏j=1(1+1n)=limn→∞(1+1n)n=e
- If p>1, cjn=1/np⟹limn→∞n∏j=1(1+1np)=limn→∞(1+1np)n=elimn→∞1np−1=1
- cjn=jknk+1⟹limn→∞n∏j=1(1+jknk+1)=exp(limn→∞∑nj=1jknk+1)=e1/(k+1)
- cjn=Bn×∫jj−1f(x)dx, then limn→∞n∏j=1(1+Bn∫jj−1f(x)dx)=exp(limn→∞Bn∫n0f(x)dx), in particular, if we take Bn=(∫jj−1f(x)dx)−1, then max1≤j≤n|∫jj−1f(x)dx∫n0f(x)dx|→0⟹limn→∞n∏j=1(1+∫jj−1f(x)dx∫n0f(x)dx)=e.
- Many examples of infinite products converge to 1.
No comments:
Post a Comment