\( \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\P}{\mathcal P} \newcommand{\B}{\mathcal B} \newcommand{\F}{\mathbb{F}} \newcommand{\E}{\mathcal E} \newcommand{\brac}[1]{\left(#1\right)} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\matrixx}[1]{\begin{bmatrix}#1\end {bmatrix}} \newcommand{\vmatrixx}[1]{\begin{vmatrix} #1\end{vmatrix}} \newcommand{\lims}{\mathop{\overline{\lim}}} \newcommand{\limi}{\mathop{\underline{\lim}}} \newcommand{\limn}{\lim_{n\to\infty}} \newcommand{\limsn}{\lims_{n\to\infty}} \newcommand{\limin}{\limi_{n\to\infty}} \newcommand{\nul}{\mathop{\mathrm{Nul}}} \newcommand{\col}{\mathop{\mathrm{Col}}} \newcommand{\rank}{\mathop{\mathrm{Rank}}} \newcommand{\dis}{\displaystyle} \newcommand{\spann}{\mathop{\mathrm{span}}} \newcommand{\range}{\mathop{\mathrm{range}}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\innerr}[1]{\left\langle #1 \right \rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\toto}{\rightrightarrows} \newcommand{\upto}{\nearrow} \newcommand{\downto}{\searrow} \newcommand{\qed}{\quad \blacksquare} \newcommand{\tr}{\mathop{\mathrm{tr}}} \newcommand{\bm}{\boldsymbol} \newcommand{\cupp}{\bigcup} \newcommand{\capp}{\bigcap} \newcommand{\sqcupp}{\bigsqcup} \newcommand{\re}{\mathop{\mathrm{Re}}} \newcommand{\im}{\mathop{\mathrm{Im}}} \newcommand{\comma}{\text{,}} \newcommand{\foot}{\text{。}} \)

Thursday, May 7, 2015

Record an observation

Let $\Omega$ be a measure space, a $\sigma$-algebra of subsets of $\Omega$ is said to be finite if it is generated by finitely many subsets $X_1,\dots,X_n\subseteq \Omega$.

Observation. A random variable $X$ on $\Omega$ is simple if and only if it is measurable w.r.t. a finite $\sigma$-algebra.

Proof. Suppose that $X=\sum _{i=1}^nx_i I_{A_i}$, then the $\sigma$-algebra induced by $X$ is precisely $\sigma(A_1,\dots,A_n)$, which is finite. Conversely, suppose that $X$ is measurable on $\Sigma=\sigma(B_1,\dots,B_n)$, then every element in $\sigma(B_1,\dots,B_n)$ is a finite union of elements in some measurable partition $\mathcal C=\{C_1,\dots,C_M\}$. Moreover, since $X^{-1}(B)$ is $\Sigma$-measurable for every Borel set $B$, the disjoint collection $\{X^{-1}(\{a\})\}_{a\in \R}$ must have at most finitely many ($\leq 2^M$) elements, thus we are done.

No comments:

Post a Comment