\( \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\P}{\mathcal P} \newcommand{\B}{\mathcal B} \newcommand{\F}{\mathbb{F}} \newcommand{\E}{\mathcal E} \newcommand{\brac}[1]{\left(#1\right)} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\matrixx}[1]{\begin{bmatrix}#1\end {bmatrix}} \newcommand{\vmatrixx}[1]{\begin{vmatrix} #1\end{vmatrix}} \newcommand{\lims}{\mathop{\overline{\lim}}} \newcommand{\limi}{\mathop{\underline{\lim}}} \newcommand{\limn}{\lim_{n\to\infty}} \newcommand{\limsn}{\lims_{n\to\infty}} \newcommand{\limin}{\limi_{n\to\infty}} \newcommand{\nul}{\mathop{\mathrm{Nul}}} \newcommand{\col}{\mathop{\mathrm{Col}}} \newcommand{\rank}{\mathop{\mathrm{Rank}}} \newcommand{\dis}{\displaystyle} \newcommand{\spann}{\mathop{\mathrm{span}}} \newcommand{\range}{\mathop{\mathrm{range}}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\innerr}[1]{\left\langle #1 \right \rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\toto}{\rightrightarrows} \newcommand{\upto}{\nearrow} \newcommand{\downto}{\searrow} \newcommand{\qed}{\quad \blacksquare} \newcommand{\tr}{\mathop{\mathrm{tr}}} \newcommand{\bm}{\boldsymbol} \newcommand{\cupp}{\bigcup} \newcommand{\capp}{\bigcap} \newcommand{\sqcupp}{\bigsqcup} \newcommand{\re}{\mathop{\mathrm{Re}}} \newcommand{\im}{\mathop{\mathrm{Im}}} \newcommand{\comma}{\text{,}} \newcommand{\foot}{\text{。}} \)

Thursday, December 26, 2013

weak $C^1$ norm dominates $C^0$ norm on $C^1[0,1]$ (to be used in tutorial).

The weak $C^k$ norm for $f:[a,b] \to \R$ is defined by \[
\|f\|_{W^{k,1}} =\sum_{i=0}^k \int_a^b |f^{(i)}(t)|\,dt.
\] This is an exercise (a problem stated in some forum) to show that the weak $C^1$ norm (hence weak $C^k$ norm, this concept comes from Sobolev spaces) dominates the $C^0$ norm (i.e., sup-norm):
Problem. If $f\in C^1[0,1]$, show that \[
\sup_{x\ge\in [0,1]}|f(x)|\leq \int_0^1|f(t)|\,dt +\int_0^1 |f'(t)|\,dt.
\] 
Solution. Denote $I=[0,1]$. Let $x_0\in I$ be such that $|f(x_0)|=\|f\|_{[0,1]}$. Then for any $\alpha,\beta\in I$ we have \[
\int_{x_0}^\beta |f'(t)|\,dt \ge |f(x_0)-f(\beta)|
\] and \[
\int_{\alpha}^{x_0} |f'(t)|\,dt \ge |f(x_0)-f(\alpha)|.
\] On summing up, by triangle inequality we have \[
\int_0^1|f'(t)|\,dt \ge \int_\alpha^\beta |f'(t)|\,dt \ge |2f(x_0)-f(\alpha)-f(\beta)|.
\] On the other hand, by continuity of $f$ and the differentiability of $g(x):=\int_0^x|f(t)|\,dt$ on $(0,1)$ we have \[
\int_0^1|f(t)|\,dt =g(1)-g(0)=g'(c)=|f(c)|,
\] for some $c\in (0,1)$. Therefore by triangle inequality again we have \begin{align*}
\|f\|_{W^1[0,1]}&:= \int_0^1|f(t)|\,dt+\int_{0}^{1} |f'(t)|\,dt\\
&\ge  |2f(x_0)-f(\alpha)-f(\beta)| + |f(c)|\\
&\ge |2f(x_0)-f(\alpha)-f(\beta)+f(c)|.
\end{align*} Now we set $\alpha = x_0$ and $\beta=c$ to get $\|f\|_{W^1[0,1]}\ge |f(x_0)|=\|f\|_{[0,1]}$, as desired.$\qed$

No comments:

Post a Comment