\( \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\P}{\mathcal P} \newcommand{\B}{\mathcal B} \newcommand{\F}{\mathbb{F}} \newcommand{\E}{\mathcal E} \newcommand{\brac}[1]{\left(#1\right)} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\matrixx}[1]{\begin{bmatrix}#1\end {bmatrix}} \newcommand{\vmatrixx}[1]{\begin{vmatrix} #1\end{vmatrix}} \newcommand{\lims}{\mathop{\overline{\lim}}} \newcommand{\limi}{\mathop{\underline{\lim}}} \newcommand{\limn}{\lim_{n\to\infty}} \newcommand{\limsn}{\lims_{n\to\infty}} \newcommand{\limin}{\limi_{n\to\infty}} \newcommand{\nul}{\mathop{\mathrm{Nul}}} \newcommand{\col}{\mathop{\mathrm{Col}}} \newcommand{\rank}{\mathop{\mathrm{Rank}}} \newcommand{\dis}{\displaystyle} \newcommand{\spann}{\mathop{\mathrm{span}}} \newcommand{\range}{\mathop{\mathrm{range}}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\innerr}[1]{\left\langle #1 \right \rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\toto}{\rightrightarrows} \newcommand{\upto}{\nearrow} \newcommand{\downto}{\searrow} \newcommand{\qed}{\quad \blacksquare} \newcommand{\tr}{\mathop{\mathrm{tr}}} \newcommand{\bm}{\boldsymbol} \newcommand{\cupp}{\bigcup} \newcommand{\capp}{\bigcap} \newcommand{\sqcupp}{\bigsqcup} \newcommand{\re}{\mathop{\mathrm{Re}}} \newcommand{\im}{\mathop{\mathrm{Im}}} \newcommand{\comma}{\text{,}} \newcommand{\foot}{\text{。}} \)

Sunday, December 15, 2013

Fourier Series

Usual exercises in Fourier series ask students to prove identity of the form \[
f=\sum a_n\cos nx+\sum b_n\sin nx.
\] Most of them are extremely straightforward and what you need is sufficient manpower, patience and time. If I were the one who teach Fourier series, I would propose the following identities as examples:
Problem. By using the Fourier series expansion of $f(x)=\cos \alpha x$, $x\in (-\pi,\pi)$, prove that \[
\cot x=\frac{1}{x}+\sum_{n=1}^\infty \brac{\frac{1}{x-n\pi}+\frac{1}{x+n\pi}}=\frac{1}{x}+\sum_{n=1}^\infty \frac{2x}{x^2-n^2\pi^2}
\] and also \[
\csc x=\frac{1}{x}+\sum_{n=1}^\infty (-1)^n \brac{\frac{1}{x-n\pi} +\frac{1}{x+n\pi}}=\frac{1}{x}+\sum_{n=1}^\infty (-1)^n \frac{2x}{x^2-n^2\pi^2}.
\] Also evaluate $\dis \sum_{n=1}^\infty \frac{1}{n^2-\alpha^2}$.
The surprise should be: there is apparently no evidence that Fourier series is involved!

No comments:

Post a Comment