\( \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\P}{\mathcal P} \newcommand{\B}{\mathcal B} \newcommand{\F}{\mathbb{F}} \newcommand{\E}{\mathcal E} \newcommand{\brac}[1]{\left(#1\right)} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\matrixx}[1]{\begin{bmatrix}#1\end {bmatrix}} \newcommand{\vmatrixx}[1]{\begin{vmatrix} #1\end{vmatrix}} \newcommand{\lims}{\mathop{\overline{\lim}}} \newcommand{\limi}{\mathop{\underline{\lim}}} \newcommand{\limn}{\lim_{n\to\infty}} \newcommand{\limsn}{\lims_{n\to\infty}} \newcommand{\limin}{\limi_{n\to\infty}} \newcommand{\nul}{\mathop{\mathrm{Nul}}} \newcommand{\col}{\mathop{\mathrm{Col}}} \newcommand{\rank}{\mathop{\mathrm{Rank}}} \newcommand{\dis}{\displaystyle} \newcommand{\spann}{\mathop{\mathrm{span}}} \newcommand{\range}{\mathop{\mathrm{range}}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\innerr}[1]{\left\langle #1 \right \rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\toto}{\rightrightarrows} \newcommand{\upto}{\nearrow} \newcommand{\downto}{\searrow} \newcommand{\qed}{\quad \blacksquare} \newcommand{\tr}{\mathop{\mathrm{tr}}} \newcommand{\bm}{\boldsymbol} \newcommand{\cupp}{\bigcup} \newcommand{\capp}{\bigcap} \newcommand{\sqcupp}{\bigsqcup} \newcommand{\re}{\mathop{\mathrm{Re}}} \newcommand{\im}{\mathop{\mathrm{Im}}} \newcommand{\comma}{\text{,}} \newcommand{\foot}{\text{。}} \)

Wednesday, May 28, 2014

An Explicit Example of a Sequence Which has Convergent Subnet but no Convergent Subsequence

I get confused by my (faked) intuition that all subnets of a sequence should also be a subsequence. This turns out to be wrong, and I try to seek for easy example.

The following is the easiest one:

Example. Let $\mathcal I$ be the set of vectors $(n_1,n_2,\dots)$, where $n_i\in \N$ for each $i$ and $n_1<n_2<\cdots$. The cardinality of $\mathcal I$ is easily seen to be $|\R|$. Now our desired sequence will be a sequence of functions defined on $\mathcal I$ as follows:

Let $i=(n_1,n_2,\dots)\in \mathcal I$, we define \[
f_n(i)=\begin{cases}
(-1)^k,&\text{if }n=n_k,\\
0,&\text{otherwise}.
\end{cases}
\] It is easy to see that given an $i=(n_1,n_2,\dots)\in \mathcal I$, $\{f_{n_k}(i)\}=\{(-1)^k\}$ diverges.

With a little abuse of notation, we define $f_n = (f_n(i))_{\mathcal I}$. Now $f_1,f_2,\dots \in [-1,1]^{\mathcal I}$. By Tychonoff's Theorem $f_1,f_2,\dots \in [-1,1]^{\mathcal I}$ is compact w.r.t. the product topology, therefore $\{f_n\}$, being a net, must have a convergent subnet by a standard exercise on nets.

We claim that $\{f_n\}$ has no convergent subsequence. Suppose it does, then there is $\{n_k\}$ such that $\{f_{n_k}\}$ converges w.r.t. product topology. By definition, it has coordinatewise convergence: For every $i\in \mathcal I$, $f_{n_k}(i)$ converges. This is a contradiction if we choose $i=(n_1,n_2,\dots)$.$\qed$

No comments:

Post a Comment