\( \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\P}{\mathcal P} \newcommand{\B}{\mathcal B} \newcommand{\F}{\mathbb{F}} \newcommand{\E}{\mathcal E} \newcommand{\brac}[1]{\left(#1\right)} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\matrixx}[1]{\begin{bmatrix}#1\end {bmatrix}} \newcommand{\vmatrixx}[1]{\begin{vmatrix} #1\end{vmatrix}} \newcommand{\lims}{\mathop{\overline{\lim}}} \newcommand{\limi}{\mathop{\underline{\lim}}} \newcommand{\limn}{\lim_{n\to\infty}} \newcommand{\limsn}{\lims_{n\to\infty}} \newcommand{\limin}{\limi_{n\to\infty}} \newcommand{\nul}{\mathop{\mathrm{Nul}}} \newcommand{\col}{\mathop{\mathrm{Col}}} \newcommand{\rank}{\mathop{\mathrm{Rank}}} \newcommand{\dis}{\displaystyle} \newcommand{\spann}{\mathop{\mathrm{span}}} \newcommand{\range}{\mathop{\mathrm{range}}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\innerr}[1]{\left\langle #1 \right \rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\toto}{\rightrightarrows} \newcommand{\upto}{\nearrow} \newcommand{\downto}{\searrow} \newcommand{\qed}{\quad \blacksquare} \newcommand{\tr}{\mathop{\mathrm{tr}}} \newcommand{\bm}{\boldsymbol} \newcommand{\cupp}{\bigcup} \newcommand{\capp}{\bigcap} \newcommand{\sqcupp}{\bigsqcup} \newcommand{\re}{\mathop{\mathrm{Re}}} \newcommand{\im}{\mathop{\mathrm{Im}}} \newcommand{\comma}{\text{,}} \newcommand{\foot}{\text{。}} \)

Monday, August 18, 2014

Record Two Computational Problems

Computation 1. Let $m$ be a positive integer and $\phi:\R^m\to \C^m$ be the standard parametrization of the $m$-dimensional torus $T^m$ in $\C^m$ given by \[
\phi(x_1.\dots,x_m)=(e^{ix_1},\dots,e^{ix_m}).
\] Prove that $\phi$ is isometric (w.r.t. the standard Riemannian metric on $\R^m$ and $\C^m$).
Solution. The first thought would be to consider the map \[C:(z_1,\dots,z_m)\mapsto (\re z_1,\im z_1,\dots,\im z_m)\in \R^{2m}\] and then to consider the "local" representation of $\phi$, the $C\circ \phi$, but then it would be found that this is not of any help to compute $d\phi_p$, $p\in \R^m$.

We can only find $d\phi_p$ pointwise. Namely, let $v\in \R^m$ and let $\gamma'(0)=v$, with $\gamma(0)=p$, then
\[
d\phi_p(v)=d\phi_p(\gamma'(0))=\frac{d}{dt}{\phi\circ \gamma(t)}\bigg|_{t=0}.
\] From this we readily see that $d\phi_p$ is computable! And in fact, for $(v_1,\dots,v_m)\in \R^m$, \[
d\phi_p(v_1,\dots,v_m) =(v_1e^{ip_1},\dots,v_me^{ip_m}).
\] Therefore $\phi$ is an isometry because
\[
\inner{d\phi_p v,d\phi_p v'}_{\C^m}=\sum_{j=1}^m v'_je^{-ip_j}v_je^{ip_j}=\sum_{j=1}^mv_jv_j'=\inner{v,v'}_{\R^m}.\qed
\]
Computation 2. Let $m$ be a positive integer and
\[
\pi_m:(S^m\setminus \{(1,0,\dots,0)\},\inner{,}_{\R^{m+1}})\to \brac{\R^m,\frac{4}{(1+|x|^2)^2}\inner{,}_{\R^m}}.
\] be the stereographic projection given by
\[
\pi_m(x_0,\dots,c_m)=\frac{1}{1-x_0}(x_1,\dots,x_m).
\] Prove that $\pi_m$ is an isometry.
Solution. As before for $p\in S^{m}\setminus \{(1,0,\dots,0)\}$ and $v\in T_pS^m=(\R p)^\perp$, we have
\[
d(\pi_m)_{(p_0,\dots,p_m)} (v_0,\dots,v_m) = \frac{1}{1-p_0}(v_1,\dots,v_m) +\frac{v_0}{(1-p_0)^2}(p_1,\dots,p_m),
\] therefore
\begin{align*}
&\color{white}{=}\inner{d(\pi_m)_p (v),d(\pi_m)_p (v')}_{\pi_m(p), \brac{\R^m,\frac{4}{(1+|x|^2)^2}\inner{,}_{\R^m}}}\\
&= \frac{4}{(1+|\pi_m(p)|^2)^2} \cdot \frac{\inner{v,v'}_{\R^{m+1}}}{(1-p_0)^2}\\
&=\inner{v,v'}.\qed
\end{align*}

No comments:

Post a Comment