\( \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\P}{\mathcal P} \newcommand{\B}{\mathcal B} \newcommand{\F}{\mathbb{F}} \newcommand{\E}{\mathcal E} \newcommand{\brac}[1]{\left(#1\right)} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\matrixx}[1]{\begin{bmatrix}#1\end {bmatrix}} \newcommand{\vmatrixx}[1]{\begin{vmatrix} #1\end{vmatrix}} \newcommand{\lims}{\mathop{\overline{\lim}}} \newcommand{\limi}{\mathop{\underline{\lim}}} \newcommand{\limn}{\lim_{n\to\infty}} \newcommand{\limsn}{\lims_{n\to\infty}} \newcommand{\limin}{\limi_{n\to\infty}} \newcommand{\nul}{\mathop{\mathrm{Nul}}} \newcommand{\col}{\mathop{\mathrm{Col}}} \newcommand{\rank}{\mathop{\mathrm{Rank}}} \newcommand{\dis}{\displaystyle} \newcommand{\spann}{\mathop{\mathrm{span}}} \newcommand{\range}{\mathop{\mathrm{range}}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\innerr}[1]{\left\langle #1 \right \rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\toto}{\rightrightarrows} \newcommand{\upto}{\nearrow} \newcommand{\downto}{\searrow} \newcommand{\qed}{\quad \blacksquare} \newcommand{\tr}{\mathop{\mathrm{tr}}} \newcommand{\bm}{\boldsymbol} \newcommand{\cupp}{\bigcup} \newcommand{\capp}{\bigcap} \newcommand{\sqcupp}{\bigsqcup} \newcommand{\re}{\mathop{\mathrm{Re}}} \newcommand{\im}{\mathop{\mathrm{Im}}} \newcommand{\comma}{\text{,}} \newcommand{\foot}{\text{。}} \)

Thursday, October 16, 2014

A Math5011 Exercise

In a discussion with some students in this course I find that I have another solution different from the official one.

Problem. Let $\mathcal N$ denote the Vitali set in $[0,1]$, show that $m^*([0,1]\setminus \mathcal N)=1$.

Remark. Here $\mathcal N$ is a set of those representatives of classes in $[0,1]/\!\!\sim$, where $\sim$ is an equivalence relation on $[0,1]$ given by $x\sim y\iff x-y\in \Q$, and we have $[x]=(x+\Q)\cap [0,1]$. Of course we know that $\mathcal N$ being a nonmeasurable set must satisfy $m^*(\mathcal N)>0$.

Solution. This directly follows form

Claim. $m_*(A)=m(L)-m^*(L\setminus A)$ for any closed set $\bm{L\supseteq A}$ that is bounded. 

Proof. To see this, note that
\begin{align*}
m(L)-m^*(L\setminus A) &= \inf\{m(L)-\lambda(U):U\supseteq L\setminus A,U \text{ open}\}\\
&=\inf\{m(L\setminus U) : L\setminus U\subseteq A,U\text{ open}\}\\
&=\inf\{\lambda(K):K\subseteq A,K\text{ closed, contained in }L\},
\end{align*} finally note that since $A\subseteq L$ and $L$ is bounded, we have
\[
\{K\subseteq \R:K\subseteq A,K\text{ closed, contained in }L\} = \{K:K\text{ compact and contained in }A\}
\] it follows that $m(L)-m^*(L\setminus A)=m_*(A)$.$\qed$

The claim says that to do inner approximation of $A$, we can do outer approximation of $L\setminus A$ first (provided that $L\supseteq A$) and then subtract this extract part from $\lambda(L)$ to get inner approximation of $A$.

Now the problem is readily solved in the following way: Set $L=[0,1]$, $A=\mathcal N$, then \[m_*(\mathcal N) = 1- m^*([0,1]\setminus \mathcal N),\] and since measurable subset of $\mathcal N$ must have measure zero (same proof as $m(\mathcal N)$ if it were measurable), and we are done.$\qed$

No comments:

Post a Comment