\( \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\P}{\mathcal P} \newcommand{\B}{\mathcal B} \newcommand{\F}{\mathbb{F}} \newcommand{\E}{\mathcal E} \newcommand{\brac}[1]{\left(#1\right)} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\matrixx}[1]{\begin{bmatrix}#1\end {bmatrix}} \newcommand{\vmatrixx}[1]{\begin{vmatrix} #1\end{vmatrix}} \newcommand{\lims}{\mathop{\overline{\lim}}} \newcommand{\limi}{\mathop{\underline{\lim}}} \newcommand{\limn}{\lim_{n\to\infty}} \newcommand{\limsn}{\lims_{n\to\infty}} \newcommand{\limin}{\limi_{n\to\infty}} \newcommand{\nul}{\mathop{\mathrm{Nul}}} \newcommand{\col}{\mathop{\mathrm{Col}}} \newcommand{\rank}{\mathop{\mathrm{Rank}}} \newcommand{\dis}{\displaystyle} \newcommand{\spann}{\mathop{\mathrm{span}}} \newcommand{\range}{\mathop{\mathrm{range}}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\innerr}[1]{\left\langle #1 \right \rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\toto}{\rightrightarrows} \newcommand{\upto}{\nearrow} \newcommand{\downto}{\searrow} \newcommand{\qed}{\quad \blacksquare} \newcommand{\tr}{\mathop{\mathrm{tr}}} \newcommand{\bm}{\boldsymbol} \newcommand{\cupp}{\bigcup} \newcommand{\capp}{\bigcap} \newcommand{\sqcupp}{\bigsqcup} \newcommand{\re}{\mathop{\mathrm{Re}}} \newcommand{\im}{\mathop{\mathrm{Im}}} \newcommand{\comma}{\text{,}} \newcommand{\foot}{\text{。}} \)

Wednesday, October 15, 2014

Record a problem

In PG office PhD students are preparing their "Qualifying Exam" in Advanced Calculus, one of them discusses with me the following interesting question:

Problem. Find a sequence $\{x_n\}$ of real numbers such that $\dis \limn x_n=1$ and \[
\sum_{n=1}^\infty \frac{1}{n^{x_n}}<\infty.
\]Solution.
For every $\alpha>1$ the series $\sum 1/n^{\alpha}$ converges, thus, for every $k\in \N$ and $\alpha=1+1/k$, there will be an $N_k$ such that \[
\sum_{n\ge N_k}\frac{1}{n^{1+1/k}}<\frac{1}{2^k}.
\]  We may assume $\{N_k\}$ is strictly increasing, then we can define \[
x_j = 1+\frac{1}{k}\quad \text{if } N_k\leq j < N_{k+1}.
\] And of course this choice will do! (with any choices $x_1,\dots,x_{N_1-1}$ whom we don't care)$\qed$

No comments:

Post a Comment