\( \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\P}{\mathcal P} \newcommand{\B}{\mathcal B} \newcommand{\F}{\mathbb{F}} \newcommand{\E}{\mathcal E} \newcommand{\brac}[1]{\left(#1\right)} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\matrixx}[1]{\begin{bmatrix}#1\end {bmatrix}} \newcommand{\vmatrixx}[1]{\begin{vmatrix} #1\end{vmatrix}} \newcommand{\lims}{\mathop{\overline{\lim}}} \newcommand{\limi}{\mathop{\underline{\lim}}} \newcommand{\limn}{\lim_{n\to\infty}} \newcommand{\limsn}{\lims_{n\to\infty}} \newcommand{\limin}{\limi_{n\to\infty}} \newcommand{\nul}{\mathop{\mathrm{Nul}}} \newcommand{\col}{\mathop{\mathrm{Col}}} \newcommand{\rank}{\mathop{\mathrm{Rank}}} \newcommand{\dis}{\displaystyle} \newcommand{\spann}{\mathop{\mathrm{span}}} \newcommand{\range}{\mathop{\mathrm{range}}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\innerr}[1]{\left\langle #1 \right \rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\toto}{\rightrightarrows} \newcommand{\upto}{\nearrow} \newcommand{\downto}{\searrow} \newcommand{\qed}{\quad \blacksquare} \newcommand{\tr}{\mathop{\mathrm{tr}}} \newcommand{\bm}{\boldsymbol} \newcommand{\cupp}{\bigcup} \newcommand{\capp}{\bigcap} \newcommand{\sqcupp}{\bigsqcup} \newcommand{\re}{\mathop{\mathrm{Re}}} \newcommand{\im}{\mathop{\mathrm{Im}}} \newcommand{\comma}{\text{,}} \newcommand{\foot}{\text{。}} \)

Tuesday, October 21, 2014

Basis of $\R^\infty=\R^\N$ must be uncountable

Recall that a subset $M$ of a vector space $X$ is a basis if and only if every element in $X$ can be written as a linear combinations of finitely many elements in $M$.

The title of this post has a simple proof: $\{a_\alpha\in \R^\infty\}_{\alpha>0}$, where $a_\alpha = (1^\alpha,2^\alpha,3^\alpha,\dots)$, is an uncountable linearly independent subset, so every basis has to be uncountable.

I just want to point out knowledge in functional analysis quickly gives an intuitive answer.

Suppose $\R^\infty$ has $M$ as a countable basis, then consider its vector subspace \[\ell^\infty:=\{(x_1,x_2,\dots)\in \R^\infty: \{x_n\} \text{ bounded}\},
\] a standard prototype on which we do functional analysis, must also have a countable basis. However, if we equip $\ell^\infty$ with a norm $\|(x_n)\|=\sup_{n \ge 1}|x_n|$, then $\ell^\infty$ becomes a Banach space with countable basis.

This is a contradiction to the standard fact in functional analysis that every basis of an infinite dimensional Banach space must be uncountable, so every basis of $\R^\infty$ must be uncountable!

No comments:

Post a Comment