Tuesday, April 27, 2010
Monday, April 26, 2010
Record some useful command for the environment tikzpicture.
\begin{tikzpicture}[>=stealth,
execute at end picture=%
{
\begin{pgfonlayer}{background}
\path[fill=yellow,rounded corners]
(current bounding box.south west) rectangle
(current bounding box.north east);
\end{pgfonlayer}
}]
%drawing command here
\end{tikzpicture}
\begin{tikzpicture}[remember picture,overlay]
\node [scale=10,text opacity=0.2]
at (current page.center) {Sample};
\end{tikzpicture}
\begin{tikzpicture}[remember picture,overlay]
\node [xshift=1cm,yshift=1cm] at (current page.south west)
[text width=7cm,fill=red!20,rounded corners,above right]
{
text
};
\end{tikzpicture}
\usepackage{tikz}
\usetikzlibrary{calc,through,backgrounds}
\usetikzlibrary{decorations.pathmorphing}
\usetikzlibrary{decorations.text}
\usetikzlibrary{decorations.shapes}
- Introduction to 3D-plotting.
http://www.fauskes.net/nb/introduction-to-sketch/
\usepackage{tikz}
\usetikzlibrary{calc,through,backgrounds}
\usetikzlibrary{decorations.pathmorphing}
\usetikzlibrary{decorations.text}
\usetikzlibrary{decorations.shapes}
Saturday, April 24, 2010
202, Check the convergence
Problem. Let $ [x]$ be the biggest integer $ \leq x$. Let $ a>0$. Determine the convergence of the improper integral \[
\int_0^1\left(\left[\frac{a}{x}\right]-a\left[\frac{1}{x}\right]\right)\,d x.
\]
\int_0^1\left(\left[\frac{a}{x}\right]-a\left[\frac{1}{x}\right]\right)\,d x.
\]
Friday, April 23, 2010
招人報 Summer course
o係黎緊個 summer kin li 話可以搞 math370,但條件為我要搵到 5 個人。當然如果人夠多的話,呢個 course 可以以 lecture 形式進行 (唔係就要變成 reading course 了...)。有興趣的話請留低 ITSC account,姓名。
List (ITSC): Ph_ccn, cclee, chhui, ypliaa
List (ITSC): Ph_ccn, cclee, chhui, ypliaa
Wednesday, April 21, 2010
心情好差
MATH102 大炒,唔好問我咩分喇...。
只可以說一句,「A 的炒不了,炒的 A 不了。」唉!
從前提及過 $ \prod_{k=1}^{n-1}\sin \frac{k\pi}{n}=\frac{n}{2^{n-1}}$ 這樣的一條等式。
最近看到一個例子,取某些特定的整數 $ k$,再建立一個新的乘積,便能夠建立一條美麗而簡單的等式。設 $ n$ 為大於 1 的奇數,$ \varphi(n)$ 為 Euler-$ \varphi$ 函數,即 $ \varphi(n) =$ 小於 $ n$ 及與其互質的正整數的個數。設 $ a_1,a_2,\dots,a_{\varphi(n)}$ 為與 $ n$ 互質的正整數,那麼它們成為了模 $ n$ 的一個簡系 (reduced residue system),又因為 $ (2,n)=1$,從而 $ 2a_1,2a_2,\dots,2a_{\varphi(n)}$ 也是一個模 $ n$ 的簡系,因此我們有\[
\left|\prod_{k=1}^{\varphi(n)}\cos \frac{a_k\pi}{n}\right|=\frac{1}{2^{\varphi(n)}}.
\]
取 $ n$ 為質數 $ p$,則有 \[
\left|\prod_{k=1}^{p-1}\cos \frac{k\pi}{p}\right|=\frac{1}{2^{p-1}},
\] 初等的東西果然很容易讓人``萌" 起來!繼代數不等式後,偶被初等數論萌倒了。
再在本文最開頭所說的等式中取 $ n = p$(質數),兩式相乘,得到 \[
\left|\prod_{k=1}^{p-1}\sin \frac{2k\pi}{p}\right|=\frac{p}{2^{p-1}}=\prod_{k=1}^{p-1}\sin \frac{k\pi}{p},\] 看到這等式後,很自然會問:「這是``偶然"嗎?」
最近有同學問我,設 $ a,b$ 為正整數,證明:若 $ 4ab-1|(4a^2-1)^2$,則 $ a=b$。
唔知點解果時``發左癲",觀測唔到某 d 明顯到冇得再明顯 ge 野,搞到唔識做。
訓訓下覺呢個問題又彈返出黎,搞到訓唔着,順手寫寫下,``下?!"。
只可以說一句,「A 的炒不了,炒的 A 不了。」唉!
從前提及過 $ \prod_{k=1}^{n-1}\sin \frac{k\pi}{n}=\frac{n}{2^{n-1}}$ 這樣的一條等式。
最近看到一個例子,取某些特定的整數 $ k$,再建立一個新的乘積,便能夠建立一條美麗而簡單的等式。設 $ n$ 為大於 1 的奇數,$ \varphi(n)$ 為 Euler-$ \varphi$ 函數,即 $ \varphi(n) =$ 小於 $ n$ 及與其互質的正整數的個數。設 $ a_1,a_2,\dots,a_{\varphi(n)}$ 為與 $ n$ 互質的正整數,那麼它們成為了模 $ n$ 的一個簡系 (reduced residue system),又因為 $ (2,n)=1$,從而 $ 2a_1,2a_2,\dots,2a_{\varphi(n)}$ 也是一個模 $ n$ 的簡系,因此我們有\[
\left|\prod_{k=1}^{\varphi(n)}\cos \frac{a_k\pi}{n}\right|=\frac{1}{2^{\varphi(n)}}.
\]
取 $ n$ 為質數 $ p$,則有 \[
\left|\prod_{k=1}^{p-1}\cos \frac{k\pi}{p}\right|=\frac{1}{2^{p-1}},
\] 初等的東西果然很容易讓人``萌" 起來!繼代數不等式後,偶被初等數論萌倒了。
再在本文最開頭所說的等式中取 $ n = p$(質數),兩式相乘,得到 \[
\left|\prod_{k=1}^{p-1}\sin \frac{2k\pi}{p}\right|=\frac{p}{2^{p-1}}=\prod_{k=1}^{p-1}\sin \frac{k\pi}{p},\] 看到這等式後,很自然會問:「這是``偶然"嗎?」
最近有同學問我,設 $ a,b$ 為正整數,證明:若 $ 4ab-1|(4a^2-1)^2$,則 $ a=b$。
唔知點解果時``發左癲",觀測唔到某 d 明顯到冇得再明顯 ge 野,搞到唔識做。
訓訓下覺呢個問題又彈返出黎,搞到訓唔着,順手寫寫下,``下?!"。
Sunday, April 18, 2010
Exercises on Fubini's principle
There are two pieces of integrals (in my collection of past solved problem) that require you to use Fubini's principle to tackle. The previous one is not hard, and similar idea can be applied to the second one, enjoy them.
Integral 1. $\displaystyle \int_0^\infty\frac{\cos x-1}{xe^x}\,d x$.
Numerical answer: -0.34657
Integral 2. $\displaystyle \int_0^1 \frac{\tan^{-1}x}{x\sqrt{1-x^2}}\,d x$.
Numerical answer: 1.3845
(my solution to this one is quite long, and I forgot to extract the solution on the Internet)
最近心情唔好,求求大家唔好再用 202 黎抽我水了= =。
上次金仔堂 totorial 已經俾人抽足成堂。
Integral 1. $\displaystyle \int_0^\infty\frac{\cos x-1}{xe^x}\,d x$.
Numerical answer: -0.34657
Integral 2. $\displaystyle \int_0^1 \frac{\tan^{-1}x}{x\sqrt{1-x^2}}\,d x$.
Numerical answer: 1.3845
(my solution to this one is quite long, and I forgot to extract the solution on the Internet)
最近心情唔好,求求大家唔好再用 202 黎抽我水了= =。
上次金仔堂 totorial 已經俾人抽足成堂。
Saturday, April 17, 2010
Some problems (not all of them challenging, you may try)
Computation 1. Use simple trick taught in Math190 (something call convolution?) to show that $ \displaystyle \left(\sum_{n=0}^{\infty}\frac{(-1)^{n}x^{2n+1}}{2^{2n+1}(2n+1)!}\right)^{2}=-\frac{1}{2}\sum_{n=1}^{\infty}\frac{(-1)^{n}}{(2n)!}x^{2n}.$ I don't know if there is any trigonometric function that proves this formula instantly.
Problem 2. Determine if the series $ \displaystyle \sum_{n=2}^\infty \frac{\log n}{n(n-1)}$ (base $ e$) converges.
Problem 3. Find all $ p\in\mathbb{R}$ such that $ \displaystyle \sum_{k=2}^\infty \frac{1}{\big(\log (\log k)\big)^{p\log k}}$ converges.
Problem 4. Let $ 0<x_1<1$ and Define $ x_{n+1}=x_n(1-x_n)$. Show that the series $ \sum x_n$ diverges.
Problem 2. Determine if the series $ \displaystyle \sum_{n=2}^\infty \frac{\log n}{n(n-1)}$ (base $ e$) converges.
Problem 3. Find all $ p\in\mathbb{R}$ such that $ \displaystyle \sum_{k=2}^\infty \frac{1}{\big(\log (\log k)\big)^{p\log k}}$ converges.
Problem 4. Let $ 0<x_1<1$ and Define $ x_{n+1}=x_n(1-x_n)$. Show that the series $ \sum x_n$ diverges.
Friday, April 16, 2010
關於 LaTeX
有同學表示想學 $\LaTeX$。
要寫 C++ 同 complie 返個 program 出黎,我地要有 visualstudio。
要寫 $\LaTeX$ 同 compile 返個 pdf 出黎,我地要好多種 compiler 中其中一種。
我以前係用 CTeX (內置 WinEdt),可惜呢個軟件對繁體中文支持十分之弱。
取而代之我係用 TexMaker,詳細安裝可參見下面連結:
http://gtchen.pixnet.net/blog/post/4072739
跟足哂步驟,係時候學點樣打。網上面有好多好多 latex 教材,其中非常適合入門 ge 算係呢個:
http://yenlung.math.nccu.edu.tw/~site/drupal-5.1/idisk/quicklatex.pdf
理論上睇完上面呢個 pdf 已經可以得到好靚 ge 排版效果,有唔明可以再問。
而下都係一個幾有用 ge 網,有問題時亦可以呢到搵搵先。
http://edt1023.sayya.org/tex/latex123/node1.html
最後,關於 latex 的中文討論網站:
http://bbs.ctex.org/index.php
我某 d 文章可以作為參考:
http://ihome.ust.hk/~cclee/document/190present111.tex
要寫 C++ 同 complie 返個 program 出黎,我地要有 visualstudio。
要寫 $\LaTeX$ 同 compile 返個 pdf 出黎,我地要好多種 compiler 中其中一種。
我以前係用 CTeX (內置 WinEdt),可惜呢個軟件對繁體中文支持十分之弱。
取而代之我係用 TexMaker,詳細安裝可參見下面連結:
http://gtchen.pixnet.net/blog/post/4072739
跟足哂步驟,係時候學點樣打。網上面有好多好多 latex 教材,其中非常適合入門 ge 算係呢個:
http://yenlung.math.nccu.edu.tw/~site/drupal-5.1/idisk/quicklatex.pdf
理論上睇完上面呢個 pdf 已經可以得到好靚 ge 排版效果,有唔明可以再問。
而下都係一個幾有用 ge 網,有問題時亦可以呢到搵搵先。
http://edt1023.sayya.org/tex/latex123/node1.html
最後,關於 latex 的中文討論網站:
http://bbs.ctex.org/index.php
我某 d 文章可以作為參考:
http://ihome.ust.hk/~cclee/document/190present111.tex
Wednesday, April 14, 2010
New 202 presentation assignment
今日去搵 kin li 講講 dirichlet test 條題目 (最尾果條 ge part a),因為題目本身冇俾 $g$ 係 differentiable,令到題目難度大大提高 (但結論依然正確)。
今日俾佢睇左我呢個寫法:(Click me)
冇乜點細心睇過,話方向係可行的,同學仔得閒 ge 話幫手睇睇。
今日俾佢睇左我呢個寫法:(Click me)
冇乜點細心睇過,話方向係可行的,同學仔得閒 ge 話幫手睇睇。
Tuesday, April 13, 2010
Sunday, April 11, 2010
最近的 MIDTERM
MATH204 已炒,MATH202 出奇地考得不錯。
比較了兩份202 試卷 (我考的是 makeup 版),僥倖! 我的比較簡單。
總結來說較多人考的那一份難的只有第 3 第 4 條。(廢話)
暫時我只想到第 4 條的解,希望和 kin li 的不同。
Problem. Let $ f:\mathbb{R}\to \mathbb{R}$ be twice differentiable and for all $ x\in [0,1]$, $ |f''(x)|\leq 2010$. If there exists $ c\in (0,1)$ such that $ f(c)>f(0)$ and $ f(c)>f(1)$, then prove that
$ |f'(0)|+|f'(1)|\leq 2010$.
比較了兩份202 試卷 (我考的是 makeup 版),僥倖! 我的比較簡單。
總結來說較多人考的那一份難的只有第 3 第 4 條。(廢話)
暫時我只想到第 4 條的解,希望和 kin li 的不同。
Problem. Let $ f:\mathbb{R}\to \mathbb{R}$ be twice differentiable and for all $ x\in [0,1]$, $ |f''(x)|\leq 2010$. If there exists $ c\in (0,1)$ such that $ f(c)>f(0)$ and $ f(c)>f(1)$, then prove that
$ |f'(0)|+|f'(1)|\leq 2010$.
Tuesday, April 6, 2010
Sunday, April 4, 2010
Thursday, April 1, 2010
Problem on function + simple inequality from AL discussion.
Recently solved a problem that is given from my classmate. (the solution is confirmed to be right by Kin Li, at least at the moment I post the question here) You can try the following one.
Problem 1. Let $ f:[0,1]\to[0,1],g:[0,1]\to[0,1]$ be continuous and satisfy $ f\circ g(x)=g\circ f(x)$. Prove that there is a $ w\in [0,1]$ such that $ f(w)=g(w)$.
I think it is not that easy. :)
Problem 2. Suppose $ a,b,c >0$ and $ ab+bc+ca=\frac{1}{3}$, show that \[\frac{a}{a^2-bc+1}+\frac{b}{b^2-ca+1}+\frac{c}{c^2-ab+1}\ge \frac{1}{a+b+c}.\]
Once again, AL knowledge is enough.
Problem 1. Let $ f:[0,1]\to[0,1],g:[0,1]\to[0,1]$ be continuous and satisfy $ f\circ g(x)=g\circ f(x)$. Prove that there is a $ w\in [0,1]$ such that $ f(w)=g(w)$.
I think it is not that easy. :)
Problem 2. Suppose $ a,b,c >0$ and $ ab+bc+ca=\frac{1}{3}$, show that \[\frac{a}{a^2-bc+1}+\frac{b}{b^2-ca+1}+\frac{c}{c^2-ab+1}\ge \frac{1}{a+b+c}.\]
Once again, AL knowledge is enough.
Subscribe to:
Posts (Atom)