Saturday, April 17, 2010
Some problems (not all of them challenging, you may try)
Computation 1. Use simple trick taught in Math190 (something call convolution?) to show that $ \displaystyle \left(\sum_{n=0}^{\infty}\frac{(-1)^{n}x^{2n+1}}{2^{2n+1}(2n+1)!}\right)^{2}=-\frac{1}{2}\sum_{n=1}^{\infty}\frac{(-1)^{n}}{(2n)!}x^{2n}.$ I don't know if there is any trigonometric function that proves this formula instantly.
Problem 2. Determine if the series $ \displaystyle \sum_{n=2}^\infty \frac{\log n}{n(n-1)}$ (base $ e$) converges.
Problem 3. Find all $ p\in\mathbb{R}$ such that $ \displaystyle \sum_{k=2}^\infty \frac{1}{\big(\log (\log k)\big)^{p\log k}}$ converges.
Problem 4. Let $ 0<x_1<1$ and Define $ x_{n+1}=x_n(1-x_n)$. Show that the series $ \sum x_n$ diverges.
Problem 2. Determine if the series $ \displaystyle \sum_{n=2}^\infty \frac{\log n}{n(n-1)}$ (base $ e$) converges.
Problem 3. Find all $ p\in\mathbb{R}$ such that $ \displaystyle \sum_{k=2}^\infty \frac{1}{\big(\log (\log k)\big)^{p\log k}}$ converges.
Problem 4. Let $ 0<x_1<1$ and Define $ x_{n+1}=x_n(1-x_n)$. Show that the series $ \sum x_n$ diverges.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment