\( \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\P}{\mathcal P} \newcommand{\B}{\mathcal B} \newcommand{\F}{\mathbb{F}} \newcommand{\E}{\mathcal E} \newcommand{\brac}[1]{\left(#1\right)} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\matrixx}[1]{\begin{bmatrix}#1\end {bmatrix}} \newcommand{\vmatrixx}[1]{\begin{vmatrix} #1\end{vmatrix}} \newcommand{\lims}{\mathop{\overline{\lim}}} \newcommand{\limi}{\mathop{\underline{\lim}}} \newcommand{\limn}{\lim_{n\to\infty}} \newcommand{\limsn}{\lims_{n\to\infty}} \newcommand{\limin}{\limi_{n\to\infty}} \newcommand{\nul}{\mathop{\mathrm{Nul}}} \newcommand{\col}{\mathop{\mathrm{Col}}} \newcommand{\rank}{\mathop{\mathrm{Rank}}} \newcommand{\dis}{\displaystyle} \newcommand{\spann}{\mathop{\mathrm{span}}} \newcommand{\range}{\mathop{\mathrm{range}}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\innerr}[1]{\left\langle #1 \right \rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\toto}{\rightrightarrows} \newcommand{\upto}{\nearrow} \newcommand{\downto}{\searrow} \newcommand{\qed}{\quad \blacksquare} \newcommand{\tr}{\mathop{\mathrm{tr}}} \newcommand{\bm}{\boldsymbol} \newcommand{\cupp}{\bigcup} \newcommand{\capp}{\bigcap} \newcommand{\sqcupp}{\bigsqcup} \newcommand{\re}{\mathop{\mathrm{Re}}} \newcommand{\im}{\mathop{\mathrm{Im}}} \newcommand{\comma}{\text{,}} \newcommand{\foot}{\text{。}} \)

Saturday, April 17, 2010

Some problems (not all of them challenging, you may try)

Computation 1. Use simple trick taught in Math190 (something call convolution?) to show that $  \displaystyle \left(\sum_{n=0}^{\infty}\frac{(-1)^{n}x^{2n+1}}{2^{2n+1}(2n+1)!}\right)^{2}=-\frac{1}{2}\sum_{n=1}^{\infty}\frac{(-1)^{n}}{(2n)!}x^{2n}.$ I don't know if there is any trigonometric function that proves this formula instantly.

Problem 2. Determine if the series $  \displaystyle \sum_{n=2}^\infty \frac{\log n}{n(n-1)}$ (base $  e$) converges.

Problem 3. Find all $  p\in\mathbb{R}$ such that $  \displaystyle \sum_{k=2}^\infty \frac{1}{\big(\log (\log k)\big)^{p\log k}}$ converges.

Problem 4. Let $  0<x_1<1$ and Define $  x_{n+1}=x_n(1-x_n)$. Show that the series $  \sum x_n$ diverges.

No comments:

Post a Comment