\( \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\P}{\mathcal P} \newcommand{\B}{\mathcal B} \newcommand{\F}{\mathbb{F}} \newcommand{\E}{\mathcal E} \newcommand{\brac}[1]{\left(#1\right)} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\matrixx}[1]{\begin{bmatrix}#1\end {bmatrix}} \newcommand{\vmatrixx}[1]{\begin{vmatrix} #1\end{vmatrix}} \newcommand{\lims}{\mathop{\overline{\lim}}} \newcommand{\limi}{\mathop{\underline{\lim}}} \newcommand{\limn}{\lim_{n\to\infty}} \newcommand{\limsn}{\lims_{n\to\infty}} \newcommand{\limin}{\limi_{n\to\infty}} \newcommand{\nul}{\mathop{\mathrm{Nul}}} \newcommand{\col}{\mathop{\mathrm{Col}}} \newcommand{\rank}{\mathop{\mathrm{Rank}}} \newcommand{\dis}{\displaystyle} \newcommand{\spann}{\mathop{\mathrm{span}}} \newcommand{\range}{\mathop{\mathrm{range}}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\innerr}[1]{\left\langle #1 \right \rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\toto}{\rightrightarrows} \newcommand{\upto}{\nearrow} \newcommand{\downto}{\searrow} \newcommand{\qed}{\quad \blacksquare} \newcommand{\tr}{\mathop{\mathrm{tr}}} \newcommand{\bm}{\boldsymbol} \newcommand{\cupp}{\bigcup} \newcommand{\capp}{\bigcap} \newcommand{\sqcupp}{\bigsqcup} \newcommand{\re}{\mathop{\mathrm{Re}}} \newcommand{\im}{\mathop{\mathrm{Im}}} \newcommand{\comma}{\text{,}} \newcommand{\foot}{\text{。}} \)

Tuesday, July 27, 2010

撞,撞,撞!

小喇叭 MATH306 撞哂 PHYS121, 111,無奈之下只好揀 MATH321,將會有兩日對住同一個 professor 連續 3 個鐘- -。

我 d linear algebra 真係好唔掂 (難怪我 B- = =),證下面條 inequality 證左好耐 (仲要搵人幫拖)。($  \mathcal L(X,Y)$ denotes a collection of linear maps from $  X$ to $  Y$.)

Problem 1. Let $  U$ and $  V$ be finite dimensional vector spaces, $  S\in \mathcal L(V,W)$, $  T\in \mathcal L(U,V)$, prove that \[\dim \text{Nul}(ST)\leq \dim \text{Nul}(S)+\dim \text{Nul}(T).\]
遲啲自己啲 fact prove 得夠多嘅話試下順便整埋 collection,而家煩惱在 d 書冇答案。

一條 analysis problem,可視為 202 練習:

Problem 2. Let $  f$ be continuous on $  [0,\pi]$, $  n\in \mathbb{N}$. Prove that \[\lim_{n\to\infty}\int_{0}^{\pi}f(x)|\sin{nx}|\,dx=\frac{2}{\pi}\int_{0}^{\pi}f(x)\,dx.\]

冇記錯其實有 $  {\displaystyle \lim_{n\to\infty}} \int_0^\pi f(x)g(nx)\,dx$ 之類嘅一般結果,但詳細唔記得左。

No comments:

Post a Comment