Tuesday, July 27, 2010
撞,撞,撞!
小喇叭 MATH306 撞哂 PHYS121, 111,無奈之下只好揀 MATH321,將會有兩日對住同一個 professor 連續 3 個鐘- -。
我 d linear algebra 真係好唔掂 (難怪我 B- = =),證下面條 inequality 證左好耐 (仲要搵人幫拖)。($ \mathcal L(X,Y)$ denotes a collection of linear maps from $ X$ to $ Y$.)
Problem 1. Let $ U$ and $ V$ be finite dimensional vector spaces, $ S\in \mathcal L(V,W)$, $ T\in \mathcal L(U,V)$, prove that \[\dim \text{Nul}(ST)\leq \dim \text{Nul}(S)+\dim \text{Nul}(T).\]
遲啲自己啲 fact prove 得夠多嘅話試下順便整埋 collection,而家煩惱在 d 書冇答案。
一條 analysis problem,可視為 202 練習:
Problem 2. Let $ f$ be continuous on $ [0,\pi]$, $ n\in \mathbb{N}$. Prove that \[\lim_{n\to\infty}\int_{0}^{\pi}f(x)|\sin{nx}|\,dx=\frac{2}{\pi}\int_{0}^{\pi}f(x)\,dx.\]
冇記錯其實有 $ {\displaystyle \lim_{n\to\infty}} \int_0^\pi f(x)g(nx)\,dx$ 之類嘅一般結果,但詳細唔記得左。
我 d linear algebra 真係好唔掂 (難怪我 B- = =),證下面條 inequality 證左好耐 (仲要搵人幫拖)。($ \mathcal L(X,Y)$ denotes a collection of linear maps from $ X$ to $ Y$.)
Problem 1. Let $ U$ and $ V$ be finite dimensional vector spaces, $ S\in \mathcal L(V,W)$, $ T\in \mathcal L(U,V)$, prove that \[\dim \text{Nul}(ST)\leq \dim \text{Nul}(S)+\dim \text{Nul}(T).\]
遲啲自己啲 fact prove 得夠多嘅話試下順便整埋 collection,而家煩惱在 d 書冇答案。
一條 analysis problem,可視為 202 練習:
Problem 2. Let $ f$ be continuous on $ [0,\pi]$, $ n\in \mathbb{N}$. Prove that \[\lim_{n\to\infty}\int_{0}^{\pi}f(x)|\sin{nx}|\,dx=\frac{2}{\pi}\int_{0}^{\pi}f(x)\,dx.\]
冇記錯其實有 $ {\displaystyle \lim_{n\to\infty}} \int_0^\pi f(x)g(nx)\,dx$ 之類嘅一般結果,但詳細唔記得左。
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment