Wednesday, July 7, 2010
久違的 math midterm
好耐冇考過 maths midterm 喇,唔知點解往往都係臨考試前知識增長得特別快。三點半左右喺拉巴開始行去 rm2465,沿路見到好多中學生喺學術大堂果到睇 report。我埋去睇睇原來係初中 ge 數學專題報告黎,研究內容有三四種,我只記得一種,就係 convex polygon 有幾多種 partition 方法。其實呢樣係組合數學裏面講用 recurrence relation 做 counting 時 ge 一個典型 example,不過中二中三就識呢 d 野,對我黎講真係幾好野= = (我果時都唔知做緊乜)。沿路撞到 macro,佢又撞到自己中學啊 sir,咁佢地就傾傾傾,我用佢啊 sir ge 權力笠左包菊花茶飲。然後上課室等 4 點正果堂 midterm。
原來佢啊 sir 十幾年前係 ust 人,佢 ge 年代就係 kin li 教 204 ge 時代。
三點九,去到 rm 2465 等運到;
四點正,奇怪,kin li 遲到?
四點半,kin li office 冇人;
四半九,終於見人,原來係去左向班中學生做演講,唔記得內容係咩了。
**********
Problem 1. (10 marks) Let $ h:\mathbb{R}^2\to \mathbb{R}$ satisfy for all $ x,y\in \mathbb{R}^2$, $ |h(x)-h(y)|\leq \frac{1}{3}d(x,y)$, where $ d$ is the usual metric on $ \mathbb{R}^2$. Prove that there exists a unique continuous function $ f:[0,1]\to \mathbb{R}$ such that for all $ x\in [0,1]$,
$ h\big(f(x),x\big)+h\big(x,f(x)\big)=f(x)$.
Problem 2. (a) (9 marks) For $ n=1,2,3,\dots$, let $ f_n:\mathbb{R}\to \mathbb{R}$ be differentiable such that $ f'_n(x)$ is continuous on $ I=[0,1]$. For every $ t\in I$, there exists at least one $ n$ such that $ f'_n(t)=0$. Prove that there exist a positive integer $ N$ and a nonempty subinterval $ J$ of $ I$ such that $ f_N$ is constant on $ J$.
(b) (1 mark) In part (a), if we replace $ I$ by the open interval $ (0,1)$, will the statement remain true? Please give a `yes' or `no' answer.
**********
其實兩條都係 standard 問題,我地成班人 ge 高低就係取決於成份卷裏面最神聖 ge 1 分題。yes?or no?我地大部分人都係做左九個字左右 (考試時間為兩個鐘)。每人大概都係用半個鐘就寫好頭兩條 ge 答案。(b) part 就算自己幾肯定都好,始終 metric spaces 呢個課題我仲係幾陌生,我唔敢擔保,自己做左少少證明,答左 yes。唯一令人猶疑 ge 地方就係 $ (0,1)$ 唔係 complete metric space,但佢只要 existence ...... 。
MC 永遠都係最刻人憎。
原來佢啊 sir 十幾年前係 ust 人,佢 ge 年代就係 kin li 教 204 ge 時代。
三點九,去到 rm 2465 等運到;
四點正,奇怪,kin li 遲到?
四點半,kin li office 冇人;
四半九,終於見人,原來係去左向班中學生做演講,唔記得內容係咩了。
**********
Problem 1. (10 marks) Let $ h:\mathbb{R}^2\to \mathbb{R}$ satisfy for all $ x,y\in \mathbb{R}^2$, $ |h(x)-h(y)|\leq \frac{1}{3}d(x,y)$, where $ d$ is the usual metric on $ \mathbb{R}^2$. Prove that there exists a unique continuous function $ f:[0,1]\to \mathbb{R}$ such that for all $ x\in [0,1]$,
$ h\big(f(x),x\big)+h\big(x,f(x)\big)=f(x)$.
Problem 2. (a) (9 marks) For $ n=1,2,3,\dots$, let $ f_n:\mathbb{R}\to \mathbb{R}$ be differentiable such that $ f'_n(x)$ is continuous on $ I=[0,1]$. For every $ t\in I$, there exists at least one $ n$ such that $ f'_n(t)=0$. Prove that there exist a positive integer $ N$ and a nonempty subinterval $ J$ of $ I$ such that $ f_N$ is constant on $ J$.
(b) (1 mark) In part (a), if we replace $ I$ by the open interval $ (0,1)$, will the statement remain true? Please give a `yes' or `no' answer.
**********
其實兩條都係 standard 問題,我地成班人 ge 高低就係取決於成份卷裏面最神聖 ge 1 分題。yes?or no?我地大部分人都係做左九個字左右 (考試時間為兩個鐘)。每人大概都係用半個鐘就寫好頭兩條 ge 答案。(b) part 就算自己幾肯定都好,始終 metric spaces 呢個課題我仲係幾陌生,我唔敢擔保,自己做左少少證明,答左 yes。唯一令人猶疑 ge 地方就係 $ (0,1)$ 唔係 complete metric space,但佢只要 existence ...... 。
MC 永遠都係最刻人憎。
Subscribe to:
Post Comments (Atom)
For (0,1), actually Baire category theorem is true for locally compact Hausdorff space ((0,1) is one such space), so exactly the same proof goes through.
ReplyDelete同埋你地d卷短左咁多既 @@ 我果年好似有四條架喎
ReplyDelete師兄我呢份係 mid-term,唔係 final examination。 @@
ReplyDelete