\( \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\P}{\mathcal P} \newcommand{\B}{\mathcal B} \newcommand{\F}{\mathbb{F}} \newcommand{\E}{\mathcal E} \newcommand{\brac}[1]{\left(#1\right)} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\matrixx}[1]{\begin{bmatrix}#1\end {bmatrix}} \newcommand{\vmatrixx}[1]{\begin{vmatrix} #1\end{vmatrix}} \newcommand{\lims}{\mathop{\overline{\lim}}} \newcommand{\limi}{\mathop{\underline{\lim}}} \newcommand{\limn}{\lim_{n\to\infty}} \newcommand{\limsn}{\lims_{n\to\infty}} \newcommand{\limin}{\limi_{n\to\infty}} \newcommand{\nul}{\mathop{\mathrm{Nul}}} \newcommand{\col}{\mathop{\mathrm{Col}}} \newcommand{\rank}{\mathop{\mathrm{Rank}}} \newcommand{\dis}{\displaystyle} \newcommand{\spann}{\mathop{\mathrm{span}}} \newcommand{\range}{\mathop{\mathrm{range}}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\innerr}[1]{\left\langle #1 \right \rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\toto}{\rightrightarrows} \newcommand{\upto}{\nearrow} \newcommand{\downto}{\searrow} \newcommand{\qed}{\quad \blacksquare} \newcommand{\tr}{\mathop{\mathrm{tr}}} \newcommand{\bm}{\boldsymbol} \newcommand{\cupp}{\bigcup} \newcommand{\capp}{\bigcap} \newcommand{\sqcupp}{\bigsqcup} \newcommand{\re}{\mathop{\mathrm{Re}}} \newcommand{\im}{\mathop{\mathrm{Im}}} \newcommand{\comma}{\text{,}} \newcommand{\foot}{\text{。}} \)

Wednesday, July 7, 2010

久違的 math midterm

好耐冇考過 maths midterm 喇,唔知點解往往都係臨考試前知識增長得特別快。三點半左右喺拉巴開始行去 rm2465,沿路見到好多中學生喺學術大堂果到睇 report。我埋去睇睇原來係初中 ge 數學專題報告黎,研究內容有三四種,我只記得一種,就係 convex polygon 有幾多種 partition 方法。其實呢樣係組合數學裏面講用 recurrence relation 做 counting 時 ge 一個典型 example,不過中二中三就識呢 d 野,對我黎講真係幾好野= = (我果時都唔知做緊乜)。沿路撞到 macro,佢又撞到自己中學啊 sir,咁佢地就傾傾傾,我用佢啊 sir ge 權力笠左包菊花茶飲。然後上課室等 4 點正果堂 midterm。

原來佢啊 sir 十幾年前係 ust 人,佢 ge 年代就係 kin li 教 204 ge 時代。

三點九,去到 rm 2465 等運到;
四點正,奇怪,kin li 遲到?
四點半,kin li office 冇人;
四半九,終於見人,原來係去左向班中學生做演講,唔記得內容係咩了。

**********

Problem 1. (10 marks) Let $  h:\mathbb{R}^2\to \mathbb{R}$ satisfy for all $  x,y\in \mathbb{R}^2$, $  |h(x)-h(y)|\leq \frac{1}{3}d(x,y)$, where $  d$ is the usual metric on $  \mathbb{R}^2$. Prove that there exists a unique continuous function $  f:[0,1]\to \mathbb{R}$ such that for all $  x\in [0,1]$,
$  h\big(f(x),x\big)+h\big(x,f(x)\big)=f(x)$.

Problem 2. (a) (9 marks) For $  n=1,2,3,\dots$, let $  f_n:\mathbb{R}\to \mathbb{R}$ be differentiable such that $  f'_n(x)$ is continuous on $  I=[0,1]$. For every $  t\in I$, there exists at least one $  n$ such that $  f'_n(t)=0$. Prove that there exist a positive integer $  N$ and a nonempty subinterval $  J$ of $  I$ such that $  f_N$ is constant on $  J$.

(b) (1 mark) In part (a), if we replace $  I$ by the open interval $  (0,1)$, will the statement remain true? Please give a `yes' or `no' answer.

**********

其實兩條都係 standard 問題,我地成班人 ge 高低就係取決於成份卷裏面最神聖 ge 1 分題。yes?or no?我地大部分人都係做左九個字左右 (考試時間為兩個鐘)。每人大概都係用半個鐘就寫好頭兩條 ge 答案。(b) part 就算自己幾肯定都好,始終 metric spaces 呢個課題我仲係幾陌生,我唔敢擔保,自己做左少少證明,答左 yes。唯一令人猶疑 ge 地方就係 $  (0,1)$ 唔係 complete metric space,但佢只要 existence ...... 。

MC 永遠都係最刻人憎。

3 comments:

  1. For (0,1), actually Baire category theorem is true for locally compact Hausdorff space ((0,1) is one such space), so exactly the same proof goes through.

    ReplyDelete
  2. 同埋你地d卷短左咁多既 @@ 我果年好似有四條架喎

    ReplyDelete
  3. 師兄我呢份係 mid-term,唔係 final examination。 @@

    ReplyDelete