Wednesday, July 21, 2010
New question(s)
I am waiting for the response to my proof to this problem. (actually waiting kunny...)
Problems 1. Let $ c$ be a real constant such that $\lim_{x\to 0} \frac{f(x)}{x}=c$. Find $ f(x)$ which satisfies $ f(x+y)\leq f(x)+f(y)$ for all real numbers $ x,y$.
I can't solve the following but already get a solution from Dr. Kin Li.
Problem 2. Let $ f$ be holomorphic on $ \{z:|z|<1\}$ such that $ |z|+|f(z)|\leq 1$, show that $ f\equiv 0$.
我永遠都只係識喺一點附近整個圓俾佢=.=,以後都係睇 integrand 做人。
Problems 1. Let $ c$ be a real constant such that $\lim_{x\to 0} \frac{f(x)}{x}=c$. Find $ f(x)$ which satisfies $ f(x+y)\leq f(x)+f(y)$ for all real numbers $ x,y$.
I can't solve the following but already get a solution from Dr. Kin Li.
Problem 2. Let $ f$ be holomorphic on $ \{z:|z|<1\}$ such that $ |z|+|f(z)|\leq 1$, show that $ f\equiv 0$.
我永遠都只係識喺一點附近整個圓俾佢=.=,以後都係睇 integrand 做人。
Subscribe to:
Post Comments (Atom)
印象中kunny都kai kai 地,你唔係等佢掛..
ReplyDelete都係等佢覆下姐 sosad,岩唔岩都冇所謂了。
ReplyDelete不過我特別鍾意佢個 integration 嘅 collection,
得閒冇野做,又唔係太想諗野可以拎黎消磨時間 =.=。