\( \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\P}{\mathcal P} \newcommand{\B}{\mathcal B} \newcommand{\F}{\mathbb{F}} \newcommand{\E}{\mathcal E} \newcommand{\brac}[1]{\left(#1\right)} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\matrixx}[1]{\begin{bmatrix}#1\end {bmatrix}} \newcommand{\vmatrixx}[1]{\begin{vmatrix} #1\end{vmatrix}} \newcommand{\lims}{\mathop{\overline{\lim}}} \newcommand{\limi}{\mathop{\underline{\lim}}} \newcommand{\limn}{\lim_{n\to\infty}} \newcommand{\limsn}{\lims_{n\to\infty}} \newcommand{\limin}{\limi_{n\to\infty}} \newcommand{\nul}{\mathop{\mathrm{Nul}}} \newcommand{\col}{\mathop{\mathrm{Col}}} \newcommand{\rank}{\mathop{\mathrm{Rank}}} \newcommand{\dis}{\displaystyle} \newcommand{\spann}{\mathop{\mathrm{span}}} \newcommand{\range}{\mathop{\mathrm{range}}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\innerr}[1]{\left\langle #1 \right \rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\toto}{\rightrightarrows} \newcommand{\upto}{\nearrow} \newcommand{\downto}{\searrow} \newcommand{\qed}{\quad \blacksquare} \newcommand{\tr}{\mathop{\mathrm{tr}}} \newcommand{\bm}{\boldsymbol} \newcommand{\cupp}{\bigcup} \newcommand{\capp}{\bigcap} \newcommand{\sqcupp}{\bigsqcup} \newcommand{\re}{\mathop{\mathrm{Re}}} \newcommand{\im}{\mathop{\mathrm{Im}}} \newcommand{\comma}{\text{,}} \newcommand{\foot}{\text{。}} \)

Wednesday, July 21, 2010

New question(s)

I am waiting for the response to my proof to this problem. (actually waiting kunny...)

Problems 1. Let $  c$ be a real constant such that $\lim_{x\to 0} \frac{f(x)}{x}=c$. Find $ f(x)$ which satisfies $ f(x+y)\leq f(x)+f(y)$ for all real numbers $  x,y$.

I can't solve the following but already get a solution from Dr. Kin Li.

Problem 2. Let $  f$ be holomorphic on $  \{z:|z|<1\}$ such that $  |z|+|f(z)|\leq 1$, show that $  f\equiv 0$.

我永遠都只係識喺一點附近整個圓俾佢=.=,以後都係睇 integrand 做人。

2 comments:

  1. 印象中kunny都kai kai 地,你唔係等佢掛..

    ReplyDelete
  2. 都係等佢覆下姐 sosad,岩唔岩都冇所謂了。

    不過我特別鍾意佢個 integration 嘅 collection,
    得閒冇野做,又唔係太想諗野可以拎黎消磨時間 =.=。

    ReplyDelete