Tuesday, December 20, 2011
Independent study/Sping course list
presentation 的 "講義" (?)
http://ihome.ust.hk/~cclee/document/Inde_Presentation.pdf
蠻費精神的。第二個 section 有點無謂,kin li 早在 MATH370 把所有 Hilbert space 的 dual 都找出來了...。我想做 L^1 的 dual 比較有意義?
**********
spring course list 已出,已決定 MATH5112, 4321, 4822A, 4221, HUMA 1710, CENG 1700.
http://ihome.ust.hk/~cclee/document/Inde_Presentation.pdf
蠻費精神的。第二個 section 有點無謂,kin li 早在 MATH370 把所有 Hilbert space 的 dual 都找出來了...。我想做 L^1 的 dual 比較有意義?
**********
spring course list 已出,已決定 MATH5112, 4321, 4822A, 4221, HUMA 1710, CENG 1700.
Friday, December 9, 2011
Saturday, December 3, 2011
無聊地想 linear algebra & independent study 的 presentation
大概在上一個星期的 numerical analysis (MATH3312/231) 課 professor 毛毛 提到了一個 fact:
\sigma(A):=\{\lambda\in\mathbb{C}:A-\lambda I\text{ is not inveritble}\}
\] 為 $ A$ 的 spectrum (也就是說 $ \sigma(A)$ 是 $ A$ 所有的 eigenvalue)。且定義 spectral radius 為 $ \rho(A)=\max\{|\lambda|:\lambda \in \sigma(A)\}$。
上面 $ \lim_{n\to\infty}A^n=0$ 可理解為 $ \lim_{n\to\infty}A^n \mathbf x = 0,\forall \mathbf x\in \mathbb{R}^n$。Google 一下 spectral radius 這個字就有以上那個結果的證明,且用到了 Jordan decomposition,當然我有一個更簡單的解 (TA 也確定是正確的證明),不須用到這工具。但看來就是沒有人有興趣~,還有人說這是 trivial 的 (那是一位 applied math 學生),我無言了。
我們現在證明上述定理。可知 $(\Rightarrow)$ 是顯然的,現證 $(\Leftarrow)$:
Proof. It is a well-known result in linear algebra that every matrix can be made into an upper triangular matrix under a change of basis. That is, by reviewing $A$ as a linear operator from $\C^n$ to $\C^n$ rather than a real matrix, there must be a basis in $\C^n$ so that the matrix of $A$ w.r.t. this basis becomes upper triangular. A simple proof can be found in ALGEBRA written by Michael Artin.
We upper triangularize $A$ by some $P\in GL_n(\C)$, i.e.,
\[U:=PAP^{-1}=
\begin{bmatrix}
\lambda_1& b_{12} &\cdots & b_{1n} \\
0 &\lambda_2& \cdots & b_{2n} \\
0 & 0 & \ddots & \vdots \\
0 &0 & \cdots &\lambda_n
\end{bmatrix},
\] then $U\mathbf e_1=\lambda_1 \mathbf e_1$, and $U^j \mathbf e_1=\lambda_1^j\mathbf e_1$ and hence $|\lambda_1|<1\implies U^k \mathbf e_1\to 0$.
We complete the proof by induction, assume there is $k\in \N$ so that
\[\lim_{j\to\infty} U^j(\mathbf e_1),\dots,\lim_{j\to\infty} U^j(\mathbf e_{k-1})=0.\] Then since $U(\mathbf e_{k})=\sum_{i=1}^{k-1} b_{ik}\mathbf e_i + \lambda_k \mathbf e_k$, we have
\[U^{j+1}(\mathbf e_{k})=\sum_{i=1}^{k-1} b_{ik}U^{j}(\mathbf e_i) + \lambda_k U^j(\mathbf e_k).\] For a vector $v\in \C^n$ let's denote $v^\ell$ to be its $\ell^\text{th}$ coordinate, then one has
\[ (U^{j+1}(\mathbf e_{k}))^\ell=\sum_{i=1}^{k-1} b_{ik}(U^{j}(\mathbf e_i))^\ell + \lambda_k (U^j(\mathbf e_k))^\ell,\] this implies
\[ \big|(U^{j+1}(\mathbf e_{k}))^\ell\big|\leq\sum_{i=1}^{k-1} |b_{ik}|\big|(U^{j}(\mathbf e_i))^\ell\big| + |\lambda_k| \big|(U^j(\mathbf e_k))^\ell\big|. \] By induction hypothesis $\lim_{j\to\infty}U^j (\mathbf e_i)=0$ for $i=1,2,\dots,k-1$, one has for any $\epsilon>0$, there is an $N$ such that \[
j>N\implies \big|(U^{j+1}(\mathbf e_{k}))^\ell\big|<\epsilon+ |\lambda_k| \big|(U^j(\mathbf e_k))^\ell\big|.
\] This actually implies $\lim_{k\to\infty} \big|(U^{j+1}(\mathbf e_{k}))^\ell \big|=0$ since $|\lambda_k|<1$. As this is true for $\ell=1,2,\dots,n$, so $\lim_{j\to\infty} U^j(\mathbf e_k)=0$.
We conclude by induction that $\lim_{j\to\infty} U^j(\mathbf e_k)=0$ for $k=1,2,\dots, n$. Since each vector in $\C^n$ is spanned by $\{\mathbf e_i\}_{i=1}^n$, we conclude $U^j\to 0$. Since $A^j=P^{-1}U^j P$, we conclude $A^j\to 0$ on $\C^n$, and of course, on $\R^n\subseteq \C^n$.$\qed$
Remark. For the ($\Leftarrow$) we may also use a famous result in Banach algebra. It is known that the formula of spectral radius of the matrix $A$ is $\limn \|A^n\|^{1/n}$. So $\limn \|A^n\|^{1/n} < 1$ implies we can choose $r<1$ such that there is $N\in\N$, \[
n>N\implies \|A^n\| < r^n \implies \limn \|A^n\|=0
.\] Finally for each $x\in \R^n$, $\|A^n x\|\leq \|A^n\| \|x\|$, so $A^n \to 0$ pointwise on $\R^n$.
話說我在這個 sem 跟 kin li 學 Fourier analysis。初頭也是正正常常地學 fourier series on $ \mathbb{R}/\mathbb{Z}$,其後因為我在修讀的 MATH5111/511 教 finite group representation 的關係,我便開始讀 noncommutative 的 harmonic analysis 了...。最後我的 presentation project 更差點變成 existence of Haar measure on locally compact metrizable group。我其後在想,這和 fourier analysis 關係不太大吧...,便要求只證 existence of Haar measure on compact group,取而代之以 fourier series 的方法 determine $ L^2(Q,m)$ 的 dual,其中 $ Q\subseteq\mathbb{R}$ 是 measurable 及 $ m$ 是 Lebesgue measure。
Theorem. Let $ A$ be real $ n\times n$ matrix, then $\lim_{n\to\infty}A^n=0\iff\rho(A)<1$.其中當 $A$ 為 $n\times n$ real matrix,我們定義 \[
\sigma(A):=\{\lambda\in\mathbb{C}:A-\lambda I\text{ is not inveritble}\}
\] 為 $ A$ 的 spectrum (也就是說 $ \sigma(A)$ 是 $ A$ 所有的 eigenvalue)。且定義 spectral radius 為 $ \rho(A)=\max\{|\lambda|:\lambda \in \sigma(A)\}$。
上面 $ \lim_{n\to\infty}A^n=0$ 可理解為 $ \lim_{n\to\infty}A^n \mathbf x = 0,\forall \mathbf x\in \mathbb{R}^n$。Google 一下 spectral radius 這個字就有以上那個結果的證明,且用到了 Jordan decomposition,當然我有一個更簡單的解 (TA 也確定是正確的證明),不須用到這工具。但看來就是沒有人有興趣~,還有人說這是 trivial 的 (那是一位 applied math 學生),我無言了。
我們現在證明上述定理。可知 $(\Rightarrow)$ 是顯然的,現證 $(\Leftarrow)$:
Proof. It is a well-known result in linear algebra that every matrix can be made into an upper triangular matrix under a change of basis. That is, by reviewing $A$ as a linear operator from $\C^n$ to $\C^n$ rather than a real matrix, there must be a basis in $\C^n$ so that the matrix of $A$ w.r.t. this basis becomes upper triangular. A simple proof can be found in ALGEBRA written by Michael Artin.
We upper triangularize $A$ by some $P\in GL_n(\C)$, i.e.,
\[U:=PAP^{-1}=
\begin{bmatrix}
\lambda_1& b_{12} &\cdots & b_{1n} \\
0 &\lambda_2& \cdots & b_{2n} \\
0 & 0 & \ddots & \vdots \\
0 &0 & \cdots &\lambda_n
\end{bmatrix},
\] then $U\mathbf e_1=\lambda_1 \mathbf e_1$, and $U^j \mathbf e_1=\lambda_1^j\mathbf e_1$ and hence $|\lambda_1|<1\implies U^k \mathbf e_1\to 0$.
We complete the proof by induction, assume there is $k\in \N$ so that
\[\lim_{j\to\infty} U^j(\mathbf e_1),\dots,\lim_{j\to\infty} U^j(\mathbf e_{k-1})=0.\] Then since $U(\mathbf e_{k})=\sum_{i=1}^{k-1} b_{ik}\mathbf e_i + \lambda_k \mathbf e_k$, we have
\[U^{j+1}(\mathbf e_{k})=\sum_{i=1}^{k-1} b_{ik}U^{j}(\mathbf e_i) + \lambda_k U^j(\mathbf e_k).\] For a vector $v\in \C^n$ let's denote $v^\ell$ to be its $\ell^\text{th}$ coordinate, then one has
\[ (U^{j+1}(\mathbf e_{k}))^\ell=\sum_{i=1}^{k-1} b_{ik}(U^{j}(\mathbf e_i))^\ell + \lambda_k (U^j(\mathbf e_k))^\ell,\] this implies
\[ \big|(U^{j+1}(\mathbf e_{k}))^\ell\big|\leq\sum_{i=1}^{k-1} |b_{ik}|\big|(U^{j}(\mathbf e_i))^\ell\big| + |\lambda_k| \big|(U^j(\mathbf e_k))^\ell\big|. \] By induction hypothesis $\lim_{j\to\infty}U^j (\mathbf e_i)=0$ for $i=1,2,\dots,k-1$, one has for any $\epsilon>0$, there is an $N$ such that \[
j>N\implies \big|(U^{j+1}(\mathbf e_{k}))^\ell\big|<\epsilon+ |\lambda_k| \big|(U^j(\mathbf e_k))^\ell\big|.
\] This actually implies $\lim_{k\to\infty} \big|(U^{j+1}(\mathbf e_{k}))^\ell \big|=0$ since $|\lambda_k|<1$. As this is true for $\ell=1,2,\dots,n$, so $\lim_{j\to\infty} U^j(\mathbf e_k)=0$.
We conclude by induction that $\lim_{j\to\infty} U^j(\mathbf e_k)=0$ for $k=1,2,\dots, n$. Since each vector in $\C^n$ is spanned by $\{\mathbf e_i\}_{i=1}^n$, we conclude $U^j\to 0$. Since $A^j=P^{-1}U^j P$, we conclude $A^j\to 0$ on $\C^n$, and of course, on $\R^n\subseteq \C^n$.$\qed$
Remark. For the ($\Leftarrow$) we may also use a famous result in Banach algebra. It is known that the formula of spectral radius of the matrix $A$ is $\limn \|A^n\|^{1/n}$. So $\limn \|A^n\|^{1/n} < 1$ implies we can choose $r<1$ such that there is $N\in\N$, \[
n>N\implies \|A^n\| < r^n \implies \limn \|A^n\|=0
.\] Finally for each $x\in \R^n$, $\|A^n x\|\leq \|A^n\| \|x\|$, so $A^n \to 0$ pointwise on $\R^n$.
話說我在這個 sem 跟 kin li 學 Fourier analysis。初頭也是正正常常地學 fourier series on $ \mathbb{R}/\mathbb{Z}$,其後因為我在修讀的 MATH5111/511 教 finite group representation 的關係,我便開始讀 noncommutative 的 harmonic analysis 了...。最後我的 presentation project 更差點變成 existence of Haar measure on locally compact metrizable group。我其後在想,這和 fourier analysis 關係不太大吧...,便要求只證 existence of Haar measure on compact group,取而代之以 fourier series 的方法 determine $ L^2(Q,m)$ 的 dual,其中 $ Q\subseteq\mathbb{R}$ 是 measurable 及 $ m$ 是 Lebesgue measure。
Wednesday, October 12, 2011
Classification
最近在 (midterm 前一日) 溫習 midterm 時不忘抽時間完成 MATH511 的 take-home midterm,最近令我痛苦萬分的莫過於 classify 一個給定 order 的 group。我們的 midterm 問題都是從 Artin (2nd edition) 裏抽出來,第 6, 7 課合共 10 題,其中一題就是 classify group of order 33, 18, 20, 30。33 和 30 還好,但對初初起手去做 classification 的我來說, 18 及 20 是一埸悲劇。你要做的,和 classify order 12 (書的其中一個 subsection) 沒兩樣...。
Friday, October 7, 2011
Link:
Chapter 5 不錯看!
http://www.math.ucdavis.edu/~hunter/book/pdfbook.html
作者也有一些 measure theory 的 notes,嗯........,有空才看。
http://www.math.ucdavis.edu/~hunter/book/pdfbook.html
作者也有一些 measure theory 的 notes,嗯........,有空才看。
Sunday, October 2, 2011
note to myself
- For $ 2L$ periodic functions, $ \displaystyle a_n = \frac{1}{L}\int_{-L}^Lf(x)\cos nx\,dx$ for $ \displaystyle n\ge 1$ and $ \displaystyle b_n=\frac{1}{L}\int_{-L}^L f(x)\sin nx\,dx$ for $ \displaystyle n\ge 1$.
- $ \displaystyle\hat f(0)=\frac{a_0}{2}$ and for $ \displaystyle n\ge 1$, $ \displaystyle \hat f(n) = \frac{a_n- i b_n}{2}$, $ \displaystyle \hat f(-n) = \frac{a_n+i b_n}{2}$, which is easily shown by expanding $ \displaystyle \frac{a_0}{2} + \sum_{k=1}^n (a_k\cos kx + b_k\sin kx)$.
where $ \displaystyle \hat f := (\hat f(0),\hat f(1),\hat f(-1),\hat f(2),\hat f(-2),\dots)\in \ell^2$ has the same norm as that of $ \displaystyle f$. Thus we say that the linear map $ \displaystyle f\mapsto \hat f:L^2(\mathbb T)\to \ell^2$ is isometric. Ok, let's prove that this is equivalent to (for real $ f\in L^2[-L,L]$) \[ \displaystyle\frac{1}{2L} \int_{-L}^{L} |f|^2 = \frac{(a_0)^2}{4}+\sum_{n=1}^\infty \frac{a_n^2+b_n^2}{2}.\]
Saturday, September 24, 2011
唔...
開始會使用 fourier series 的方法證明 real analysis 的一些命題 (都是書中的習題)。例如,polynomial is dense in $ C[a,b]$ (有點像副產物);或是:利用 $ L^2(\mathbb R,m)$ 的 hilbert space structure 我們能夠 identify 整個 $ \big(L^2(\mathbb R,m)\big)^*$,從而我們亦可以 identify 整個 $ \big(L^1(\mathbb R,m)\big)^*$。
Friday, September 16, 2011
$\Z+2\pi \Z$ 在 $\R$ 中稠密
第一次看到 (從 exercise) algebra 在 analysis 有簡單又得意的應用...。例如,證明 \[\mathbb Z + \mathbb Z\sqrt{2}:=\{m+n\sqrt{2}:m,n\in \mathbb Z\}\] 是在 $ \mathbb R$ 中稠密 (dense, with usual metric)。證明很簡單,因為 $ (\mathbb R,+)$ 中的子群要麼在 $ \mathbb R$ 中稠密,要麼可表達成 $ \mathbb Z a,a>0$,而後者是不可能的,不然 $ a\in\mathbb Q\cap( \mathbb R\setminus \mathbb Q)=\emptyset$。類似地,不難證明對所有有理數 $ q$ 及 無理數 $ r$ 有 $ \overline{\mathbb Z q +\mathbb Z r}=\mathbb R$。
有趣的是,對於 $ r\in \mathbb R\setminus \mathbb Q$ 我們考慮 $ \langle e^{i r\pi}\rangle=\exp(i\mathbb Z r\pi)=\exp(i(\mathbb Z 2 + \mathbb Z r)\pi)$,但 $ \mathbb Z 2 + \mathbb Z r$ 在 $ \mathbb R$ 中稠密,也就是說由 $ e^{ix}$ 在 $ \mathbb R$ 上的連續性可知,$ \exp{(i\mathbb Z r\pi)} $ 必定在 $ S^1:=\{e^{i\theta}:\theta\in\mathbb{R}\}$ 中稠密!(尤其是,可取 $ r = 1/\pi$,那麼 $ \exp{(i\mathbb Z )}$ 在 $ S^1$ 上稠密,因而 $ \overline{\sin \mathbb Z} = [-1,1]$ 及 $ \overline{\cos \mathbb N} = [-1,1]$!)
有趣的是,對於 $ r\in \mathbb R\setminus \mathbb Q$ 我們考慮 $ \langle e^{i r\pi}\rangle=\exp(i\mathbb Z r\pi)=\exp(i(\mathbb Z 2 + \mathbb Z r)\pi)$,但 $ \mathbb Z 2 + \mathbb Z r$ 在 $ \mathbb R$ 中稠密,也就是說由 $ e^{ix}$ 在 $ \mathbb R$ 上的連續性可知,$ \exp{(i\mathbb Z r\pi)} $ 必定在 $ S^1:=\{e^{i\theta}:\theta\in\mathbb{R}\}$ 中稠密!(尤其是,可取 $ r = 1/\pi$,那麼 $ \exp{(i\mathbb Z )}$ 在 $ S^1$ 上稠密,因而 $ \overline{\sin \mathbb Z} = [-1,1]$ 及 $ \overline{\cos \mathbb N} = [-1,1]$!)
Wednesday, September 14, 2011
Finallized workshop notes in analysis (simple fact on metric space, measure and measurable function), PW: My ITSC account
Welcome to point out any mistake.
The following is for 2 in 1 printing, it is to save your paper/print budget:
http://ihome.ust.hk/~cclee/document/WorkshopinAnalysis.pdf
The following is for 2 in 1 printing, it is to save your paper/print budget:
http://ihome.ust.hk/~cclee/document/WorkshopinAnalysis.pdf
Sunday, August 14, 2011
Workshop 結束
其實原名為 workshop in real analysis,最後 workshop 講唔到 integration,時間不足。我地有 7 次 meeting,每次用一至一個半鐘黎做 present,10 至 15 分鐘休息及將淨低嘅時間用黎講 notes。每次 workshop 為時三個鐘。已講 topic:
notes 喺每次 workshop 前準備,打下打下都 40 頁 notes。都整得幾辛苦,d theorem 用就用得多,從新 develop 返出黎都幾麻煩。any way 對我黎講得著唔係太多 :),因為 d 野都比較 basic。希望下個 summer 會有人幫我完成埋 integration 果 part 同埋 expand 返第一課嘅野 (compactness, total boundedness, completeness, connectedness, etc)。
notes 喺每次 workshop 前準備,打下打下都 40 頁 notes。都整得幾辛苦,d theorem 用就用得多,從新 develop 返出黎都幾麻煩。any way 對我黎講得著唔係太多 :),因為 d 野都比較 basic。希望下個 summer 會有人幫我完成埋 integration 果 part 同埋 expand 返第一課嘅野 (compactness, total boundedness, completeness, connectedness, etc)。
Thursday, August 11, 2011
無聊之下嘅產物
喺 Royden (4th edition) p.452 有一 Theorem 將 locally compact Hausdorff space 有嘅 property 集埋一齊:
其中證明 (iii) 嘅主要工具係 Urysohn's lemma,但由 Urysohn's lemma 又可推出 Tietze Extension Theorem, 從 (iii) 我地應該可以做得更多。
$ K\subseteq U\subseteq \overline{U}\subseteq V\subseteq \overline{V}\subseteq \mathcal O$.
Now we do our extension, as $ \overline{V}$ is a compact Hausdorff space, $ f$ is continuous (w.r.t. subspace topology) on $ K$, by the Tietze extension theorem there is a $ \mathcal F\in C (\overline{V})$ such that $ \mathcal F|_{K}= f|_K$, we extend $ \mathcal{F}$ on $ X\setminus \overline{V}$ by defining $ \mathcal F|_{X\setminus \overline{V}}\equiv 0$. The change of $ \mathcal F$ between $ \overline{V}$ and $ X\setminus \overline{V}$ may not be continuous, we will try to ``smooth" this transition. As $ K$ is compact and $ U\supseteq K$, by (iii) of theorem 7 there is a $ \psi \in C_c(X)$ such that $ 0\leq \psi \leq 1$, $ \psi=1$ on $ K$ and $ \psi=0$ on $ X\setminus U$. Now we claim that the product of continuous functions $ F:= \mathcal F \cdot \psi$ will do.
Clearly $ \mathop{\mathrm{supp}} F \subseteq \mathop{\mathrm{supp}} \psi$, hence $ F$ has compact support. To show $ F$ is continuous on $ X$ we use the following fact:
When $ |f|\leq M$ on $ K$, we repeat the proof above but that time $ \mathcal F$ can be chosen such that $ |\mathcal F|\leq M$ by the following version of Tietze extension theorem.$\qed$
建立呢種 extension 嘅原因係為左證明 Lusin's theorem on $ (X,\mathcal B(X),\mu)$,其中 $ X$ 為 locally compact Hausdorff,$ B(X)$ 為 Borel $ \sigma$-algebra on $ X$ 及 $ \mu$ 為 Radon measure (Royden's definition: A Borel measure such that Borel set is outer regular and open set is inner regular),我嘅 approach (某習題) 係先證明 Lusin's theorem 對 simple function 成立,從而利用 simple functions $ \{\phi_n\}$, $ \phi_n\to f$ pointwise 及 Egoroff's theorem 及再利用上述 extension 完成證明 (已證明若 $ E\in \mathcal B(X),\mu(E)<\infty$,那麼 $ E$ 是 inner regular)。
**********
Some problem for entertainment:
Problem. Let $ f:\mathbb{R}\to\mathbb{R}$ be a differentiable function so that $ \displaystyle\left|f(x)-\sin(x^2)\right|\le\frac{1}{4}$ for any $ x\in\mathbb{R}$. Prove that there exists a sequence of real numbers $ \{x_n\}_{n=1}^\infty$ for which $ \lim_{n\to\infty} f'(x_n)=+\infty$ .
其中證明 (iii) 嘅主要工具係 Urysohn's lemma,但由 Urysohn's lemma 又可推出 Tietze Extension Theorem, 從 (iii) 我地應該可以做得更多。
Modification of (iii). Let $ X$ be locally compact Hausdorff. If $ \mathcal O$ is a neighborhood of a compact subset $ K$ of $ X$, then the continuous function $ f:K\to \mathbb R$ may be extended to a function $ F\in C_c(X)$ for which $ F$ vanishes outside $ \mathcal O$.Proof. As $ K$ is compact and $ \mathcal O\supseteq K$, by (ii) of theorem 7 above there is an open $ V$ such that $ K\subseteq V\subseteq \overline{V}\subseteq \mathcal O$ with $ \overline{V}$ compact. Once again by (ii) of theorem 7 above there is an open $ U$ such that
If $ f$ is bounded, say $ |f|\leq M$ for some $ M>0$, then the extension above can be chosen so that $ |F|\leq M$ on $ X$.
$ K\subseteq U\subseteq \overline{U}\subseteq V\subseteq \overline{V}\subseteq \mathcal O$.
Now we do our extension, as $ \overline{V}$ is a compact Hausdorff space, $ f$ is continuous (w.r.t. subspace topology) on $ K$, by the Tietze extension theorem there is a $ \mathcal F\in C (\overline{V})$ such that $ \mathcal F|_{K}= f|_K$, we extend $ \mathcal{F}$ on $ X\setminus \overline{V}$ by defining $ \mathcal F|_{X\setminus \overline{V}}\equiv 0$. The change of $ \mathcal F$ between $ \overline{V}$ and $ X\setminus \overline{V}$ may not be continuous, we will try to ``smooth" this transition. As $ K$ is compact and $ U\supseteq K$, by (iii) of theorem 7 there is a $ \psi \in C_c(X)$ such that $ 0\leq \psi \leq 1$, $ \psi=1$ on $ K$ and $ \psi=0$ on $ X\setminus U$. Now we claim that the product of continuous functions $ F:= \mathcal F \cdot \psi$ will do.
Clearly $ \mathop{\mathrm{supp}} F \subseteq \mathop{\mathrm{supp}} \psi$, hence $ F$ has compact support. To show $ F$ is continuous on $ X$ we use the following fact:
Fact. Let $ X=\cup_\alpha X_\alpha$ be a union of open subsets. Then $ f:X\to Y$ is continuous if and only if the restrictions $ f|_{X_\alpha}:X_\alpha \to Y$ are continuous, where $ X_i$ has the subspace topology.
Proof. It follows from the observation that: For any subset $ A$ of $ Y$, $ f^{-1}(A)= \cup_{\alpha} (f|_{X_\alpha})^{-1}(A)$.$\qed$Observe that both $ X_1:=V$ and $ X_2:=X\setminus \overline{U}$ are open, $ X=X_1\cup X_2$. It is enough to argue $ F|_{X_i}$'s are continuous. On $ X_1$, since $ \mathcal F$ is a continuous function on $ \overline{V}$, $ \mathcal F|_V$ is therefore a continuous function on $ V$. And as $ \psi$ is continuous on $ X$, so $ F|_{X_1}$ is continuous. On $ X_2$, since $ \psi|_{X\setminus U}\equiv 0$ $ \implies$ $ \psi|_{X\setminus \overline{U}} \equiv 0$, and thus $ F|_{X\setminus \overline{U}} \equiv 0$, hence $ F|_{X_2}$ is continuous on $ X_2$. We also note that $ F|_{X\setminus \mathcal O}\equiv 0$.
When $ |f|\leq M$ on $ K$, we repeat the proof above but that time $ \mathcal F$ can be chosen such that $ |\mathcal F|\leq M$ by the following version of Tietze extension theorem.$\qed$
建立呢種 extension 嘅原因係為左證明 Lusin's theorem on $ (X,\mathcal B(X),\mu)$,其中 $ X$ 為 locally compact Hausdorff,$ B(X)$ 為 Borel $ \sigma$-algebra on $ X$ 及 $ \mu$ 為 Radon measure (Royden's definition: A Borel measure such that Borel set is outer regular and open set is inner regular),我嘅 approach (某習題) 係先證明 Lusin's theorem 對 simple function 成立,從而利用 simple functions $ \{\phi_n\}$, $ \phi_n\to f$ pointwise 及 Egoroff's theorem 及再利用上述 extension 完成證明 (已證明若 $ E\in \mathcal B(X),\mu(E)<\infty$,那麼 $ E$ 是 inner regular)。
**********
Some problem for entertainment:
Problem. Let $ f:\mathbb{R}\to\mathbb{R}$ be a differentiable function so that $ \displaystyle\left|f(x)-\sin(x^2)\right|\le\frac{1}{4}$ for any $ x\in\mathbb{R}$. Prove that there exists a sequence of real numbers $ \{x_n\}_{n=1}^\infty$ for which $ \lim_{n\to\infty} f'(x_n)=+\infty$ .
Monday, August 1, 2011
見工失敗
前排去左樂善堂余近卿中學面試去做份做八日就賺到五千嘅暑期班,貌似係為考試唔合格嘅學生而設嘅補底班黎 (亦即係我冇乜機會發揮嘅班)。咁好喇我自己又冇乜點見過工,見步行步。去到自我介紹,我講唔夠一分鐘就收口,深知不妙,最終不獲聘收埸。
我估最大原因係我冇乜教學經驗。原因係,首先我係該校校友推薦;其次係請人果位老師係 UST 師姐;再者,我個樣都算平易近人丫...。但間間學校都係以經驗為優先嘅話咁我邊鬼有經驗喎...。同埋我都唔算冇教學經驗,不過對像係班 UG year 1 ...。
我估最大原因係我冇乜教學經驗。原因係,首先我係該校校友推薦;其次係請人果位老師係 UST 師姐;再者,我個樣都算平易近人丫...。但間間學校都係以經驗為優先嘅話咁我邊鬼有經驗喎...。同埋我都唔算冇教學經驗,不過對像係班 UG year 1 ...。
Friday, July 29, 2011
暑假。學
最近都喺到學 real analysis,學習方法係:睇課文,然後完成果個 section/chapter 最少一半問題。基本上 Royden 第 4 edition 嘅 2, 3, 4, 5, 6, 7, 17, 18(.1, .2, .3, .4), 19(.1, .2), 20(.1, .2) 課都俾我``做"左。唔急於學新嘅野,只求確定自己已學嘅野唔會學得太表面同有果方面嘅解難能力 (當然會驚唔識做 d 問題...但 no pain, no gain)。本來想開始 chapter 21,但,賣割...!因為佢 study locally compact Hausdorff space,有 d result on normal space 要學返──例如 Urysohn's lamma,偏偏就係嚴民冇教果 d。我其實好想佢唔教第 8 課,即講 surface 果課,而講多 d point-set topology ...。
可能有同學問點解我明明已經讀左 math 204 仲要走去讀返 Lebesgue measure 嘅野呢?其實正正係因為讀 204,我發覺有非常大嘅必要去學返好 Lebesgue measure 知識。嚴民教授嘅 math204 課程範圍大得非常之有問題 (個人角度),要我地短時間由少少 Lebesgue measure (少少,係少少,所有引理/命題/定理全部都只係關注有界集),然後證完 Carath$ \text{\'{e}}$odory 就直接跳去 general measure。冇錯我咁樣識左 general measure $ \to$ integration $ \to$ product measure $ \to$ signed measure, Randon-Nykodym,但學得非常之唔實在。單單 Lebesgue measure 仲有好多課題可以講,Borel $ \sigma$-algebra、dense subspace of $ L^p(E)$、Egoroff, Lusin's theorem (我記得變左做 exercise)、approximation of measurable function by simple functions (結合 Lebesgue dominated convergence theorem,解 integration 題目嘅利器)、approximation of measurable set by $ G_\delta,F_\sigma$ (簡單應用:前者可以用返喺 integration;後者可以證 Lipschitz function take measurable set 去 measurable set),等等。好可惜,我喺 204 冇機會學到呢 d 基本野。
而喺我學緊呢 d 基本野嘅同時,有一班 year 1 想搞 workshop,我就即刻諗:「仲唔上馬?」順便 pre 一 present 我解過嘅題 (大部份 presentation problem 嘅來源都係 royden,仲有好多 exercise 我未放落 presentation 到,有 d 係 LCM notes 標住 ``difficult" 嘅問題,有 d 係胡繼善份 notes 嘅題且有 d 答案用左三頁紙,但我有方法只做一頁多少少)。
Workshop 嘅 notes 唔打算 upload 上黎 wordpress 住……,等到改好哂之後,確定冇乜錯漏先再放上黎。
其實呢個假唔單止睇 Royden,有 d American Mathematical Society 出版嘅書都寫得非常之好,我抽左一兩個 topic 黎睇。例如,一年前學左 Randon-Nikodym theorem,前幾日知道佢嘅應用──證明當 $ 1\leq p<\infty$ 時,對於 $ \sigma$-finite 嘅 measure space $ (X,\mu)$,有 $ (L^p(X,\mu))^*=L^q(X,\mu)$,其中 $ q$ 為 $ p$ 的 conjugate。我打算睇睇同樣嘅 theorem 其他書有冇更好嘅證法。Inder K. Rana 所寫嘅 An Introduction To Measure and Integration 都有同樣嘅證法,不過當 $ p>1$ 時佢做多一小步,將結果即刻推廣到任意 measure space $ (X,\mu)$,兩頁紙內證完。
A simple problem for entertainment.
Problem. Let $ f:\mathbb{R} \to \mathbb{R}$ be a continuous function. A point $ x$ is called a shadow point if there exists a point $ y\in \mathbb{R}$ with $y>x$ such that $f(y)>f(x)$. Let $ a<b$ be real numbers and suppose that
Workshop 已暫停兩個星期 (原因係班人要做人口普查),下個星期五開始照常繼續。黎緊兩個星期,一日講返多 d measure,一日開始講 approximation of measurable function,換句話說,Littlewood's 3 principle (我譯為``小木三律" =w=) 其中兩條 。
可能有同學問點解我明明已經讀左 math 204 仲要走去讀返 Lebesgue measure 嘅野呢?其實正正係因為讀 204,我發覺有非常大嘅必要去學返好 Lebesgue measure 知識。嚴民教授嘅 math204 課程範圍大得非常之有問題 (個人角度),要我地短時間由少少 Lebesgue measure (少少,係少少,所有引理/命題/定理全部都只係關注有界集),然後證完 Carath$ \text{\'{e}}$odory 就直接跳去 general measure。冇錯我咁樣識左 general measure $ \to$ integration $ \to$ product measure $ \to$ signed measure, Randon-Nykodym,但學得非常之唔實在。單單 Lebesgue measure 仲有好多課題可以講,Borel $ \sigma$-algebra、dense subspace of $ L^p(E)$、Egoroff, Lusin's theorem (我記得變左做 exercise)、approximation of measurable function by simple functions (結合 Lebesgue dominated convergence theorem,解 integration 題目嘅利器)、approximation of measurable set by $ G_\delta,F_\sigma$ (簡單應用:前者可以用返喺 integration;後者可以證 Lipschitz function take measurable set 去 measurable set),等等。好可惜,我喺 204 冇機會學到呢 d 基本野。
而喺我學緊呢 d 基本野嘅同時,有一班 year 1 想搞 workshop,我就即刻諗:「仲唔上馬?」順便 pre 一 present 我解過嘅題 (大部份 presentation problem 嘅來源都係 royden,仲有好多 exercise 我未放落 presentation 到,有 d 係 LCM notes 標住 ``difficult" 嘅問題,有 d 係胡繼善份 notes 嘅題且有 d 答案用左三頁紙,但我有方法只做一頁多少少)。
Workshop 嘅 notes 唔打算 upload 上黎 wordpress 住……,等到改好哂之後,確定冇乜錯漏先再放上黎。
其實呢個假唔單止睇 Royden,有 d American Mathematical Society 出版嘅書都寫得非常之好,我抽左一兩個 topic 黎睇。例如,一年前學左 Randon-Nikodym theorem,前幾日知道佢嘅應用──證明當 $ 1\leq p<\infty$ 時,對於 $ \sigma$-finite 嘅 measure space $ (X,\mu)$,有 $ (L^p(X,\mu))^*=L^q(X,\mu)$,其中 $ q$ 為 $ p$ 的 conjugate。我打算睇睇同樣嘅 theorem 其他書有冇更好嘅證法。Inder K. Rana 所寫嘅 An Introduction To Measure and Integration 都有同樣嘅證法,不過當 $ p>1$ 時佢做多一小步,將結果即刻推廣到任意 measure space $ (X,\mu)$,兩頁紙內證完。
A simple problem for entertainment.
Problem. Let $ f:\mathbb{R} \to \mathbb{R}$ be a continuous function. A point $ x$ is called a shadow point if there exists a point $ y\in \mathbb{R}$ with $y>x$ such that $f(y)>f(x)$. Let $ a<b$ be real numbers and suppose that
- All the points of the open interval $I=(a,b)$ are shadow points;
- $a$ and $b$ are not shadow points.
- $ f(x)\leq f(b)$ for all $ a<x<b$;
- $ f(a)=f(b)$.
Workshop 已暫停兩個星期 (原因係班人要做人口普查),下個星期五開始照常繼續。黎緊兩個星期,一日講返多 d measure,一日開始講 approximation of measurable function,換句話說,Littlewood's 3 principle (我譯為``小木三律" =w=) 其中兩條 。
Saturday, July 2, 2011
暑假很忙,精力都被抽到 UROP 及 Analysis Workshop 裏。
對我來說現在的日子大可分為科大 libra 開/閉 的日子。既然今天沒開放,那我就沒回科大的意欲,今天例外到其他地方吃午飯。我去…吃個飯要 30 多元,我在科大加杯凍飲只需 21 元呀…… 。
不得不說我的自控能力有問題,在家裏對着電腦說怎樣也不能安心看書……,趁機把 workshop notes 打好吧。以下是 workshop 的 syllabus:
http://ihome.ust.hk/~cclee/document/workshop.pdf
及每星期都要做的 presentation!
http://ihome.ust.hk/~cclee/document/WorkshopPresentation.pdf
感謝 Kin Li 幫忙 book 課室及贈送大量白板筆!人數還維持在 4 名 year 1,及我,8 seats 的 libra 課室明顯很勉強 (間中總會有一些 year 1/year 2 間歇性插入...)。
**********
回想起一年前某 TA 開了 topology workshop,我上了第一天便沒再去了……(實在太悶,那 TA 想有互動,但那種互動只是簡單的答幾道問題。所以我開 workshop 要求參加者答不太 obvious 的題,有一至兩星期準備,這樣才有趣),當時包括我在內有 4 位準 year 2,有趣的是只有我其後 reg topology 這個 UG course … ,我想這 TA 心已碎吧。
對我來說現在的日子大可分為科大 libra 開/閉 的日子。既然今天沒開放,那我就沒回科大的意欲,今天例外到其他地方吃午飯。我去…吃個飯要 30 多元,我在科大加杯凍飲只需 21 元呀…… 。
不得不說我的自控能力有問題,在家裏對着電腦說怎樣也不能安心看書……,趁機把 workshop notes 打好吧。以下是 workshop 的 syllabus:
http://ihome.ust.hk/~cclee/document/workshop.pdf
及每星期都要做的 presentation!
http://ihome.ust.hk/~cclee/document/WorkshopPresentation.pdf
感謝 Kin Li 幫忙 book 課室及贈送大量白板筆!人數還維持在 4 名 year 1,及我,8 seats 的 libra 課室明顯很勉強 (間中總會有一些 year 1/year 2 間歇性插入...)。
**********
回想起一年前某 TA 開了 topology workshop,我上了第一天便沒再去了……(實在太悶,那 TA 想有互動,但那種互動只是簡單的答幾道問題。所以我開 workshop 要求參加者答不太 obvious 的題,有一至兩星期準備,這樣才有趣),當時包括我在內有 4 位準 year 2,有趣的是只有我其後 reg topology 這個 UG course … ,我想這 TA 心已碎吧。
Saturday, June 11, 2011
Grade 已出
Lang 外的另外 5 科的 grade 已出。今個 sem 平平安安的度過,只是 COMP 170 拿了一隻 B+。 本 sem 的 courses:MATH303, 304, 323, 371, COMP170, LANG209。 評論的話:
303, 304:淺,courses for everyone,303 workload 重,304 幾乎沒 workload,兩者也是 hea 人必選 (反正功課臨急臨忙總會有人想到方法抄的)。
323:大家都知道嚴民是很好很好的 lecturer!聽他對課文的解說時總覺得明了九至十成,但課後複習 (或做功課) 時感覺上堂沒學到甚麼……(203, 204 已有此感覺)。workload 重,但很充實。
371:只能說幸好有同時讀 323 (不然 locally convex space、weak topology, its local base、weak-continuity 之類的 concept 很難理解)。內容很 abstract,theorem 要背熟,不然根本用不出來...。整個學期功課只有 3 份 (是令我很痛苦的三份功課),功課以外的問題有 full solution。mid-term 最後的題沒甚麼人做到。Final 是 take home 的,所以壓力不太大。尤其是整個 course 人數只有 10 人,3 名 local (包括我),餘下的不是 PG 就是 mainland,很叫人興奮。
303, 304:淺,courses for everyone,303 workload 重,304 幾乎沒 workload,兩者也是 hea 人必選 (反正功課臨急臨忙總會有人想到方法抄的)。
323:大家都知道嚴民是很好很好的 lecturer!聽他對課文的解說時總覺得明了九至十成,但課後複習 (或做功課) 時感覺上堂沒學到甚麼……(203, 204 已有此感覺)。workload 重,但很充實。
371:只能說幸好有同時讀 323 (不然 locally convex space、weak topology, its local base、weak-continuity 之類的 concept 很難理解)。內容很 abstract,theorem 要背熟,不然根本用不出來...。整個學期功課只有 3 份 (是令我很痛苦的三份功課),功課以外的問題有 full solution。mid-term 最後的題沒甚麼人做到。Final 是 take home 的,所以壓力不太大。尤其是整個 course 人數只有 10 人,3 名 local (包括我),餘下的不是 PG 就是 mainland,很叫人興奮。
Saturday, June 4, 2011
日常
今天在拉巴門口碰到 kin li,我問:「何時要來見你呢?手頭上的那幾份 paper 還沒有開始看‥‥‥。」他答:「well,反正我想多放一星期假,下星期六才開始吧。」也就是說直至今個星期的完結我還可以暫時 ``hea" 下去 XD。
Sunday, May 15, 2011
LANG Microteaching
最近整左個 file 作為 micro taching 嘅 ``material" (其實都係做樣,有人睇先算)。
http://ihome.ust.hk/~cclee/document/microteaching.pdf
咁 present 時當然唔可以用 d 咁 dense 嘅野...,我求求其其將佢 extract 左做 slide
http://ihome.ust.hk/~cclee/document/testbeamer.pdf
當中所有圖都係 tikz 畫,真係好 Q 麻煩,不過幾煩都好,都係熟能生巧...。其中我 define 左兩個 command 幾好用,留喺呢個 blog 等自己想搵返先都方便 d。
畫兩條線之間嘅 arc about 某一點:
#1 = pt, #2 = from which angle, #3 = to which angle, #4 = radius
\newcommand{\arc}[4]{#1 + (#2:#4) arc (#2:#3:#4)}
至於畫直角:
#1 about which point:
#2: angle of diagonal point
#3 length of diagonal line
\newcommand{\rightangle}[3]{
\begin{scope}[shift={#1}]
\coordinate (the point u draw angle) at (0,0);
\coordinate (diagonal point) at (#2:#3);
\coordinate (one side) at ($(the point u draw angle)!0.707106781186!45:(diagonal point)$);
\coordinate (another side) at ($(the point u draw angle)!0.707106781186!-45:(diagonal point)$);
\draw(one side) -- (diagonal point)--(another side);
\end{scope}
}
實際上冇可能下下都好準確咁計哂 d angle 出黎 (太花時間),所以好多時都係靠估,然後睇下 match 唔 match。
http://ihome.ust.hk/~cclee/document/microteaching.pdf
咁 present 時當然唔可以用 d 咁 dense 嘅野...,我求求其其將佢 extract 左做 slide
http://ihome.ust.hk/~cclee/document/testbeamer.pdf
當中所有圖都係 tikz 畫,真係好 Q 麻煩,不過幾煩都好,都係熟能生巧...。其中我 define 左兩個 command 幾好用,留喺呢個 blog 等自己想搵返先都方便 d。
畫兩條線之間嘅 arc about 某一點:
#1 = pt, #2 = from which angle, #3 = to which angle, #4 = radius
\newcommand{\arc}[4]{#1 + (#2:#4) arc (#2:#3:#4)}
至於畫直角:
#1 about which point:
#2: angle of diagonal point
#3 length of diagonal line
\newcommand{\rightangle}[3]{
\begin{scope}[shift={#1}]
\coordinate (the point u draw angle) at (0,0);
\coordinate (diagonal point) at (#2:#3);
\coordinate (one side) at ($(the point u draw angle)!0.707106781186!45:(diagonal point)$);
\coordinate (another side) at ($(the point u draw angle)!0.707106781186!-45:(diagonal point)$);
\draw(one side) -- (diagonal point)--(another side);
\end{scope}
}
實際上冇可能下下都好準確咁計哂 d angle 出黎 (太花時間),所以好多時都係靠估,然後睇下 match 唔 match。
Saturday, March 26, 2011
烏籠...
今日上 math 323 tutorial, 而且今日功課 dead line, tutorial 完左照舊又係同人吹吹 topology d 野, 跟住發覺我將所有功課裏面有關喺 topological space $ (X,\mathcal{T})$ 上, collection of limit point of $ A$ 嘅 definition 寫左做 \[
x\in A' \iff \forall U\in N_x\triangleq \{V\in \mathcal{T}:x\in V\},( U-\{x\})\cap A\neq \emptyset.
\] 咁我呢 D 乖學生黎, 有錯梗係即改, 但改好哂之後就喺到諗, $ ( U-\{x\})\cap A$ 同 $ U\cap (A-\{x\})$ 好似冇分別喎......=.=.
x\in A' \iff \forall U\in N_x\triangleq \{V\in \mathcal{T}:x\in V\},( U-\{x\})\cap A\neq \emptyset.
\] 咁我呢 D 乖學生黎, 有錯梗係即改, 但改好哂之後就喺到諗, $ ( U-\{x\})\cap A$ 同 $ U\cap (A-\{x\})$ 好似冇分別喎......=.=.
Saturday, March 5, 2011
Differentiation under the integral sign
http://en.wikipedia.org/wiki/Differentiation_under_the_integral_sign
原來有好多人都唔知呢條式嘅存在...,anyway 我都 state 左條 formula 同 condition 俾班同學聽,唔知佢地會唔會唔識證 (正常知條 formula 嘅詁 year 1 知識就夠哂數=.=)。
原來有好多人都唔知呢條式嘅存在...,anyway 我都 state 左條 formula 同 condition 俾班同學聽,唔知佢地會唔會唔識證 (正常知條 formula 嘅詁 year 1 知識就夠哂數=.=)。
Tuesday, February 15, 2011
好似冷落左呢個 blog
已經開 sem 一個星期,再加埋前段時間都冇乜再喺個 blog 打野,原因大概都係就我嘅人生,唔係科大就係屋企。所以基本上都冇乜事情可以分享...。我亦大概都會愈黎愈少喺呢個 blog 分享問題,除非對某些問題有另一種見解,從而推出更多有趣嘅 fact。
上個 sem 一科 analysis 都冇,呢個 sem 同上個 sem 最大分別係大部分都係同 analysis 有關。 而且意外自己會走去 take COMP170,我轉性了。
上左兩堂 323,撞到兩個 year 1 sit 323 嘅堂 (自愧當年自己連 topology 有乜 sit 嘅價值都唔知)。為左令到佢地可以有恆心繼續 sit 落去。我決定每星期都贈送一條同 202 進度有關嘅問題。既然教到 differentiation,我就 ``求其" 搵兩條出黎。其實 d 問題大概唔係自己喺 problem book 到抽,就係上 mathxxxxs 搵,我有信心就算自己冇某個 topic,都可以搵到有趣嘅問題黎問 (不過我自己癖好係自己 solve 到先會問人,所以有一兩堂俾唔到問題都唔奇)。
最後,我應該唔會申請人口普查份工。原因係我想嘗試讀完呢個 sem d 野去搵 L 教授做一 d research project。不過我都係要問清楚 d 先,因為我只係隱約記得研究嘅內容同 differential equation 嘅解嘅存在性有關。
上個 sem 一科 analysis 都冇,呢個 sem 同上個 sem 最大分別係大部分都係同 analysis 有關。 而且意外自己會走去 take COMP170,我轉性了。
上左兩堂 323,撞到兩個 year 1 sit 323 嘅堂 (自愧當年自己連 topology 有乜 sit 嘅價值都唔知)。為左令到佢地可以有恆心繼續 sit 落去。我決定每星期都贈送一條同 202 進度有關嘅問題。既然教到 differentiation,我就 ``求其" 搵兩條出黎。其實 d 問題大概唔係自己喺 problem book 到抽,就係上 mathxxxxs 搵,我有信心就算自己冇某個 topic,都可以搵到有趣嘅問題黎問 (不過我自己癖好係自己 solve 到先會問人,所以有一兩堂俾唔到問題都唔奇)。
最後,我應該唔會申請人口普查份工。原因係我想嘗試讀完呢個 sem d 野去搵 L 教授做一 d research project。不過我都係要問清楚 d 先,因為我只係隱約記得研究嘅內容同 differential equation 嘅解嘅存在性有關。
Subscribe to:
Posts (Atom)