Sunday, March 21, 2010
屋企真係一個寶庫
無喇喇搵到一本關於 ODE ge 書 (學校 textbook 太貴買唔起),內有 500 多條 solved problem = =,又有 brief review of 相關 material,正好補返我冇上堂聽 ge 不足,睇 powerpoint 真係睇到好攰 (我一直都係電腦睇)。
今日返學校去拎返份 math 190 功課,TA 語重心長咁俾左一個 comment 我。
Problem. Let $ f:[0,\infty)\to\mathbb{R}$ with $ f(0)=-1$ be a differentiable function so that $ |f(x)-f'(x)|<1,\forall x\ge 0$.
a) Prove that $ f$ does have a limit that is infinite.
b) Give an example of such a function.
Problem. Evaluate $\displaystyle\lim_{n\to\infty }n\left(\frac{1^{\alpha }+2^{\alpha }+...+n^{\alpha }}{n^{\alpha+1 }}-\frac{1}{\alpha+1 }\right)$, $ \alpha > 1 $.
今日返學校去拎返份 math 190 功課,TA 語重心長咁俾左一個 comment 我。
Problem. Let $ f:[0,\infty)\to\mathbb{R}$ with $ f(0)=-1$ be a differentiable function so that $ |f(x)-f'(x)|<1,\forall x\ge 0$.
a) Prove that $ f$ does have a limit that is infinite.
b) Give an example of such a function.
Problem. Evaluate $\displaystyle\lim_{n\to\infty }n\left(\frac{1^{\alpha }+2^{\alpha }+...+n^{\alpha }}{n^{\alpha+1 }}-\frac{1}{\alpha+1 }\right)$, $ \alpha > 1 $.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment