\( \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\P}{\mathcal P} \newcommand{\B}{\mathcal B} \newcommand{\F}{\mathbb{F}} \newcommand{\E}{\mathcal E} \newcommand{\brac}[1]{\left(#1\right)} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\matrixx}[1]{\begin{bmatrix}#1\end {bmatrix}} \newcommand{\vmatrixx}[1]{\begin{vmatrix} #1\end{vmatrix}} \newcommand{\lims}{\mathop{\overline{\lim}}} \newcommand{\limi}{\mathop{\underline{\lim}}} \newcommand{\limn}{\lim_{n\to\infty}} \newcommand{\limsn}{\lims_{n\to\infty}} \newcommand{\limin}{\limi_{n\to\infty}} \newcommand{\nul}{\mathop{\mathrm{Nul}}} \newcommand{\col}{\mathop{\mathrm{Col}}} \newcommand{\rank}{\mathop{\mathrm{Rank}}} \newcommand{\dis}{\displaystyle} \newcommand{\spann}{\mathop{\mathrm{span}}} \newcommand{\range}{\mathop{\mathrm{range}}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\innerr}[1]{\left\langle #1 \right \rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\toto}{\rightrightarrows} \newcommand{\upto}{\nearrow} \newcommand{\downto}{\searrow} \newcommand{\qed}{\quad \blacksquare} \newcommand{\tr}{\mathop{\mathrm{tr}}} \newcommand{\bm}{\boldsymbol} \newcommand{\cupp}{\bigcup} \newcommand{\capp}{\bigcap} \newcommand{\sqcupp}{\bigsqcup} \newcommand{\re}{\mathop{\mathrm{Re}}} \newcommand{\im}{\mathop{\mathrm{Im}}} \newcommand{\comma}{\text{,}} \newcommand{\foot}{\text{。}} \)

Wednesday, March 24, 2010

Just a review of Lagrange's Multiplier (to be corrected)

We try to create a concrete computation to find the local extreme of $  f:\mathbb{R}^n\supset U\to\mathbb{R}$ subject to the constraint $  g(\vec{x})=c$. Here $  c$ is a regular point, namely, a point such that $  g(\vec{x})=c\implies \nabla g(\vec x)\neq \vec{0}$.

Moreover, we call the surface specified by $  g(\vec x) = c$ to be $  S$, hence we are finding the local extreme of $  f$ restricted to the surface $  S$, namely, we are finding the local extreme of $  \big.f\big|_S$. Suppose now $  \big.f\big|_S$ attains the local extreme at $  \vec x = \vec x_0$, then for any $  \vec v\in\{\vec u\in\mathbb{R}^n:\nabla g(\vec x_0)\cdot \vec u = \vec 0\}:=T_{\vec x_0}S$, i.e. any tangent vector moving on $  S$ at $  \vec x_0$, we have $  D_{\vec v}f(\vec x_0)=\nabla f(\vec x_0)\cdot \vec v=0$ (for otherwise it is not an extrema).

Let's summarize the implication, $  \forall \vec v\in T_{\vec x_0}S\implies \nabla f(\vec x_0)\cdot \vec v=0$.

Since $  \nabla g(\vec x_0)$ spans the normal space of $  S$ at $  \vec x_0$, it follows that $  \nabla f(\vec x_0)=\lambda \nabla g(\vec x_0)$.

No comments:

Post a Comment