Wednesday, March 24, 2010
Just a review of Lagrange's Multiplier (to be corrected)
We try to create a concrete computation to find the local extreme of $ f:\mathbb{R}^n\supset U\to\mathbb{R}$ subject to the constraint $ g(\vec{x})=c$. Here $ c$ is a regular point, namely, a point such that $ g(\vec{x})=c\implies \nabla g(\vec x)\neq \vec{0}$.
Moreover, we call the surface specified by $ g(\vec x) = c$ to be $ S$, hence we are finding the local extreme of $ f$ restricted to the surface $ S$, namely, we are finding the local extreme of $ \big.f\big|_S$. Suppose now $ \big.f\big|_S$ attains the local extreme at $ \vec x = \vec x_0$, then for any $ \vec v\in\{\vec u\in\mathbb{R}^n:\nabla g(\vec x_0)\cdot \vec u = \vec 0\}:=T_{\vec x_0}S$, i.e. any tangent vector moving on $ S$ at $ \vec x_0$, we have $ D_{\vec v}f(\vec x_0)=\nabla f(\vec x_0)\cdot \vec v=0$ (for otherwise it is not an extrema).
Let's summarize the implication, $ \forall \vec v\in T_{\vec x_0}S\implies \nabla f(\vec x_0)\cdot \vec v=0$.
Since $ \nabla g(\vec x_0)$ spans the normal space of $ S$ at $ \vec x_0$, it follows that $ \nabla f(\vec x_0)=\lambda \nabla g(\vec x_0)$.
Moreover, we call the surface specified by $ g(\vec x) = c$ to be $ S$, hence we are finding the local extreme of $ f$ restricted to the surface $ S$, namely, we are finding the local extreme of $ \big.f\big|_S$. Suppose now $ \big.f\big|_S$ attains the local extreme at $ \vec x = \vec x_0$, then for any $ \vec v\in\{\vec u\in\mathbb{R}^n:\nabla g(\vec x_0)\cdot \vec u = \vec 0\}:=T_{\vec x_0}S$, i.e. any tangent vector moving on $ S$ at $ \vec x_0$, we have $ D_{\vec v}f(\vec x_0)=\nabla f(\vec x_0)\cdot \vec v=0$ (for otherwise it is not an extrema).
Let's summarize the implication, $ \forall \vec v\in T_{\vec x_0}S\implies \nabla f(\vec x_0)\cdot \vec v=0$.
Since $ \nabla g(\vec x_0)$ spans the normal space of $ S$ at $ \vec x_0$, it follows that $ \nabla f(\vec x_0)=\lambda \nabla g(\vec x_0)$.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment