Problem 1. Suppose f(1)=f(2)=0, f(3)=1 and f is twice differentiable on [0,3]. Show that f″(c)>12,∃c∈(0,3).
Problem 2. Suppose f(0)=0,f(1)=1, f is differentiable on [0,1]. Show that 1f′(a)+1f′(b)=2, for some distinct a,b∈(0,1).
兩條都是從某中學教師的 BLOG 中抽出來,後一條加上 distinct 的原因是為了把難度增加 (從 BLOG 中抽出來時沒有加上 distinct)。若把 distinct 移走,那很明顯存在 f′(c)=1, 取 a=b=c 便完成證明。
No comments:
Post a Comment