\( \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\P}{\mathcal P} \newcommand{\B}{\mathcal B} \newcommand{\F}{\mathbb{F}} \newcommand{\E}{\mathcal E} \newcommand{\brac}[1]{\left(#1\right)} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\matrixx}[1]{\begin{bmatrix}#1\end {bmatrix}} \newcommand{\vmatrixx}[1]{\begin{vmatrix} #1\end{vmatrix}} \newcommand{\lims}{\mathop{\overline{\lim}}} \newcommand{\limi}{\mathop{\underline{\lim}}} \newcommand{\limn}{\lim_{n\to\infty}} \newcommand{\limsn}{\lims_{n\to\infty}} \newcommand{\limin}{\limi_{n\to\infty}} \newcommand{\nul}{\mathop{\mathrm{Nul}}} \newcommand{\col}{\mathop{\mathrm{Col}}} \newcommand{\rank}{\mathop{\mathrm{Rank}}} \newcommand{\dis}{\displaystyle} \newcommand{\spann}{\mathop{\mathrm{span}}} \newcommand{\range}{\mathop{\mathrm{range}}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\innerr}[1]{\left\langle #1 \right \rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\toto}{\rightrightarrows} \newcommand{\upto}{\nearrow} \newcommand{\downto}{\searrow} \newcommand{\qed}{\quad \blacksquare} \newcommand{\tr}{\mathop{\mathrm{tr}}} \newcommand{\bm}{\boldsymbol} \newcommand{\cupp}{\bigcup} \newcommand{\capp}{\bigcap} \newcommand{\sqcupp}{\bigsqcup} \newcommand{\re}{\mathop{\mathrm{Re}}} \newcommand{\im}{\mathop{\mathrm{Im}}} \newcommand{\comma}{\text{,}} \newcommand{\foot}{\text{。}} \)

Monday, February 8, 2010

A PuiChing Question (to someone)

Problem. Denote $  [x]$ the greastest integer not exceeding $  x$, calculate $  \displaystyle\sum\limits_{k=1}^{100}[\sqrt{k(k+4)+20}]$.

Solution.
First note that $  \sqrt{k(k+4)+20}=(k+2)\sqrt{1+\big(4/(k+2)\big)^2}$, it conveys us some messages. As $  k$ increases, we have $  \sqrt{k(k+4)+20}= k+2 + f(k)$, where $  f(k)\to 0$ as $  k\to\infty$. But only the integral part deserves our concern, so if $  k+2 <\sqrt{k(k+4)+20}<k+3$, then everything goes smooth and we have $  [\sqrt{k(k+4)+20}]=k+2$. But when does this inequality hold? Just solve the inequality we have $  k>5.5$, so the inequality is true of $  k\ge 6$ and thus the value should be $  5+5+6+7+8+8+9+10+\cdots +102 = 5256$.     $  \blacksquare$

No comments:

Post a Comment