但奇怪嚴民教授明明 o係 course webpage 寫住
(5/2/2010) Tutorial times set at Tuesday, 18:00 - 18:50, in room 3215.
好在當時 save 左 ust 搵房網址入電腦 (出發時先醒起 3215 房間),點我,慳左好多功夫,但原來 3215 係一個錯 ge 地址 (3215 係 TA 房),有 4 至 5 個都走錯左地方。搵房果陣有個同班的人搵我講野...,o係果時先知道原來成日同班內地生傾計果個人都識講廣東話... (堔圳學生),俾佢呃左好耐 = =,搞到我一直都唔敢搵佢講野。最後大家都要返返去 3584 上堂。
今次 tutorial 堂好奇怪 (奇怪在變返正常),真係有個 PG 黎做 tutor...,平時都係教授一手包辦埋 tutorial 堂。老實,有少少失望。
I have come arcoss a question in uwants, prove that tan1∘ is irrational, and here is the discussion.
I suppose that tan1∘ is rational, then by the identity
tan(30θ)=∑15k=1(−1)k+1(302k−1)tan2k−1θ∑15k=0(−1)k(302k)tan2kθ
We have by putting θ=1∘, 1√3=tan(30∘)=∑15k=1(−1)k+1(302k−1)tan2k−11∘∑15k=0(−1)k(302k)tan2k1∘, this shows that 1√3 is rational, a contradiction. I hope this is one of the way that apook (koopa) thinks of.
No comments:
Post a Comment