Processing math: 100%

Tuesday, February 9, 2010

開始忙了

今日好充實,朝早上 (訓) 完 MATH151 再去再聽 eating style (HL001),然後食午餐再備課備到點半上 MATH204。嚴民 d 堂講得好快,又易明,可惜一個星期得兩堂,如果一星期有四堂我都會肯去。落左堂之後同 204 同學做功課同備課去到 5:45,六點去 MATH204 tutorial lesson。

但奇怪嚴民教授明明 o係 course webpage 寫住
(5/2/2010) Tutorial times set at Tuesday, 18:00 - 18:50, in room 3215.

好在當時 save 左 ust 搵房網址入電腦 (出發時先醒起 3215 房間),點我,慳左好多功夫,但原來 3215 係一個錯 ge 地址 (3215 係 TA 房),有 4 至 5 個都走錯左地方。搵房果陣有個同班的人搵我講野...,o係果時先知道原來成日同班內地生傾計果個人都識講廣東話... (堔圳學生),俾佢呃左好耐 = =,搞到我一直都唔敢搵佢講野。最後大家都要返返去 3584 上堂。

今次 tutorial 堂好奇怪 (奇怪在變返正常),真係有個 PG 黎做 tutor...,平時都係教授一手包辦埋 tutorial 堂。老實,有少少失望。

I have come arcoss a question in uwants, prove that tan1 is irrational, and here is the discussion.
I suppose that tan1 is rational, then by the identity
tan(30θ)=15k=1(1)k+1(302k1)tan2k1θ15k=0(1)k(302k)tan2kθ

We have by putting θ=1, 13=tan(30)=15k=1(1)k+1(302k1)tan2k1115k=0(1)k(302k)tan2k1, this shows that 13 is rational, a contradiction. I hope this is one of the way that apook (koopa) thinks of.

No comments:

Post a Comment