\( \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\P}{\mathcal P} \newcommand{\B}{\mathcal B} \newcommand{\F}{\mathbb{F}} \newcommand{\E}{\mathcal E} \newcommand{\brac}[1]{\left(#1\right)} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\matrixx}[1]{\begin{bmatrix}#1\end {bmatrix}} \newcommand{\vmatrixx}[1]{\begin{vmatrix} #1\end{vmatrix}} \newcommand{\lims}{\mathop{\overline{\lim}}} \newcommand{\limi}{\mathop{\underline{\lim}}} \newcommand{\limn}{\lim_{n\to\infty}} \newcommand{\limsn}{\lims_{n\to\infty}} \newcommand{\limin}{\limi_{n\to\infty}} \newcommand{\nul}{\mathop{\mathrm{Nul}}} \newcommand{\col}{\mathop{\mathrm{Col}}} \newcommand{\rank}{\mathop{\mathrm{Rank}}} \newcommand{\dis}{\displaystyle} \newcommand{\spann}{\mathop{\mathrm{span}}} \newcommand{\range}{\mathop{\mathrm{range}}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\innerr}[1]{\left\langle #1 \right \rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\toto}{\rightrightarrows} \newcommand{\upto}{\nearrow} \newcommand{\downto}{\searrow} \newcommand{\qed}{\quad \blacksquare} \newcommand{\tr}{\mathop{\mathrm{tr}}} \newcommand{\bm}{\boldsymbol} \newcommand{\cupp}{\bigcup} \newcommand{\capp}{\bigcap} \newcommand{\sqcupp}{\bigsqcup} \newcommand{\re}{\mathop{\mathrm{Re}}} \newcommand{\im}{\mathop{\mathrm{Im}}} \newcommand{\comma}{\text{,}} \newcommand{\foot}{\text{。}} \)

Tuesday, February 9, 2010

開始忙了

今日好充實,朝早上 (訓) 完 MATH151 再去再聽 eating style (HL001),然後食午餐再備課備到點半上 MATH204。嚴民 d 堂講得好快,又易明,可惜一個星期得兩堂,如果一星期有四堂我都會肯去。落左堂之後同 204 同學做功課同備課去到 5:45,六點去 MATH204 tutorial lesson。

但奇怪嚴民教授明明 o係 course webpage 寫住
(5/2/2010) Tutorial times set at Tuesday, 18:00 - 18:50, in room 3215.

好在當時 save 左 ust 搵房網址入電腦 (出發時先醒起 3215 房間),點我,慳左好多功夫,但原來 3215 係一個錯 ge 地址 (3215 係 TA 房),有 4 至 5 個都走錯左地方。搵房果陣有個同班的人搵我講野...,o係果時先知道原來成日同班內地生傾計果個人都識講廣東話... (堔圳學生),俾佢呃左好耐 = =,搞到我一直都唔敢搵佢講野。最後大家都要返返去 3584 上堂。

今次 tutorial 堂好奇怪 (奇怪在變返正常),真係有個 PG 黎做 tutor...,平時都係教授一手包辦埋 tutorial 堂。老實,有少少失望。

I have come arcoss a question in uwants, prove that $  \tan 1^{\circ}$ is irrational, and here is the discussion.
I suppose that $  \tan 1^{\circ}$ is rational, then by the identity
$  \displaystyle \tan (30 \theta)=\frac{\sum_{k=1}^{15}(-1)^{k+1}\binom{30}{2k-1}\tan^{2k-1}\theta}{\sum_{k=0}^{15}(-1)^k\binom{30}{2k}\tan^{2k}\theta}$

We have by putting $  \theta = 1^{\circ}$, $  \displaystyle \frac{1}{\sqrt{3}} =\tan (30^{\circ})=\frac{\sum_{k=1}^{15}(-1)^{k+1}\binom{30}{2k-1}\tan^{2k-1}1^{\circ}}{\sum_{k=0}^{15}(-1)^k\binom{30}{2k}\tan^{2k}1^{\circ}}$, this shows that $  \displaystyle\frac{1}{\sqrt{3}}$ is rational, a contradiction. I hope this is one of the way that apook (koopa) thinks of.

No comments:

Post a Comment