Friday, February 19, 2010
Problem of today's MATH190 tutorial lesson
Problems typed below can also be found in this tutorial note, http://ihome.ust.hk/~masoarer/math190/week3.pdf. For fear that the web host will be out of service due to any reason, I have typed everything below. This text is prepared for future use, for example, my ``collection of problems".
Exercise 1. Let $ a,b,c>0$, show that $ (a^3+1)(b^3+1)(c^3+1)\ge (a^2b+1)(b^2c+1)(c^2a+1)$.
My way.
Note that $ (a^3+1)(a^3+1)(b^3+1)\ge (a^2b+1)^3$, we are done (you can see what happens when $ (a,b)=(b,c)$ and $ (a,b)=(c,a)$.).
Exercise 2. If $ a,b,c>0$, prove that $ \displaystyle \frac{a+\sqrt{ab}+\sqrt[3]{abc}}{3}\leq \sqrt[3]{a\cdot \frac{a+b}{2}\cdot \frac{a+b+c}{3}}$.
My way.
We see that \begin{align*}
a\cdot \frac{a+b}{2}\cdot \frac{a+b+c}{3}&=\left(\frac{a}{3}+\frac{a}{3}+\frac{a}{3}\right)\left(\frac{a}{3}+\frac{a+b}{6}+\frac{b}{3}\right)\left(\frac{a}{3}+\frac{b}{3}+\frac{c}{3}\right)\\
&\ge \left(\frac{a}{3}+\sqrt[3]{\frac{ab(a+b)}{2\cdot 3^3}}+\frac{\sqrt[3]{abc}}{3}\right)^3.
\end{align*} Finally, $ \displaystyle\frac{a+b}{2}\ge\sqrt{ab}$ does solve the problem.
Exercise 5. Let $ a,b,c>0$, prove that $ \displaystyle \frac{a^6}{b^2+c^2}+\frac{b^6}{c^2+a^2}+\frac{c^6}{a^2+b^2}\ge \frac{abc(a+b+c)}{2}$.
My way.
Use exercise 4 once, we have a new lower bound $ \displaystyle \frac{a^6}{b^2+c^2}+\frac{b^6}{c^2+a^2}+\frac{c^6}{a^2+b^2}\ge \frac{1}{6}(a^2+b^2+c^2)^2$, since \[(a^2+b^2+c^2)^2 \ge (ab+bc+ca)^2\ge 3(abbc + bcca + caab)=3abc(a+b+c),
\] we are done.
Exercise 6. Let $ f$ be convex on $ [a,b]$. If $ c,d\in[a,b]$ with $ c-a>b-d$, prove that $ \displaystyle 2f\left(\frac{c+d}{2}\right) \leq f(c)+f(d)\leq f(c+d-b)+f(b)$.
My way.
The left inequality is obviously true. To go through right inequality, we first determine the position of $ a,b,c,d$ and $ c+d-b$. Observe that the inequality will change nothing if we interchange $ c$ and $ d$, so without loss of generality, we assume that $ c\leq d$, finally $ c+d-b\leq c \iff d\leq b$ we have known that $ a\leq c+d-b\leq c\leq d\leq b$.
Since $ \displaystyle f(c)+f(d)\leq f(c+d-b)+f(b)\iff \frac{f(b)-f(c)}{b-c}\ge \frac{f(d)-f(c+d-b)}{d-(c+d-b)}$, the equivalent inequality is obvious by convexity.
Exercise 9. Let $ A,B,C$ be angles of a triangle. Prove that $ \displaystyle \frac{\sin A}{A}+\frac{\sin B}{B}+\frac{\sin C}{C}\leq \frac{9\sqrt{3}}{2\pi}$.
My way.
We observe the ineqality $ \displaystyle \frac{\sin x}{x}\leq \left(\frac{\frac{\pi}{3}\cdot \frac{1}{2}-\frac{\sqrt{3}}{2}}{\left(\frac{\pi}{3}\right)^2}\right)\left(x-\frac{\pi}{3}\right)+\frac{3\sqrt{3}}{2\pi}$. I haven't rigorously checked its validity by calculus, at least it is true for $ x\in (0,\pi)$ with the aid of graph ploting, hence replacing $ x$ by respectively $ a,b,c$ and adding them up, we get desired result.
Exercise 10. Let $ f$ be a convex function on $ [a,b]$ and $ x,y,z\in [a,b]$. Prove by majorization inequality that $ \displaystyle f(x)+f(y)+f(z)+3f\left(\frac{x+y+z}{3}\right)\ge 2 \left(f\left(\frac{x+y}{2}\right)+f\left(\frac{y+z}{2}\right)+f\left(\frac{z+x}{2}\right)\right)$.
My way.
Correcting.
Exercise 3, 4, 7, 8 are skipped (I would not include these problems in my pdf), I am trying exercise 10.
Exercise 1. Let $ a,b,c>0$, show that $ (a^3+1)(b^3+1)(c^3+1)\ge (a^2b+1)(b^2c+1)(c^2a+1)$.
My way.
Note that $ (a^3+1)(a^3+1)(b^3+1)\ge (a^2b+1)^3$, we are done (you can see what happens when $ (a,b)=(b,c)$ and $ (a,b)=(c,a)$.).
Exercise 2. If $ a,b,c>0$, prove that $ \displaystyle \frac{a+\sqrt{ab}+\sqrt[3]{abc}}{3}\leq \sqrt[3]{a\cdot \frac{a+b}{2}\cdot \frac{a+b+c}{3}}$.
My way.
We see that \begin{align*}
a\cdot \frac{a+b}{2}\cdot \frac{a+b+c}{3}&=\left(\frac{a}{3}+\frac{a}{3}+\frac{a}{3}\right)\left(\frac{a}{3}+\frac{a+b}{6}+\frac{b}{3}\right)\left(\frac{a}{3}+\frac{b}{3}+\frac{c}{3}\right)\\
&\ge \left(\frac{a}{3}+\sqrt[3]{\frac{ab(a+b)}{2\cdot 3^3}}+\frac{\sqrt[3]{abc}}{3}\right)^3.
\end{align*} Finally, $ \displaystyle\frac{a+b}{2}\ge\sqrt{ab}$ does solve the problem.
Exercise 5. Let $ a,b,c>0$, prove that $ \displaystyle \frac{a^6}{b^2+c^2}+\frac{b^6}{c^2+a^2}+\frac{c^6}{a^2+b^2}\ge \frac{abc(a+b+c)}{2}$.
My way.
Use exercise 4 once, we have a new lower bound $ \displaystyle \frac{a^6}{b^2+c^2}+\frac{b^6}{c^2+a^2}+\frac{c^6}{a^2+b^2}\ge \frac{1}{6}(a^2+b^2+c^2)^2$, since \[(a^2+b^2+c^2)^2 \ge (ab+bc+ca)^2\ge 3(abbc + bcca + caab)=3abc(a+b+c),
\] we are done.
Exercise 6. Let $ f$ be convex on $ [a,b]$. If $ c,d\in[a,b]$ with $ c-a>b-d$, prove that $ \displaystyle 2f\left(\frac{c+d}{2}\right) \leq f(c)+f(d)\leq f(c+d-b)+f(b)$.
My way.
The left inequality is obviously true. To go through right inequality, we first determine the position of $ a,b,c,d$ and $ c+d-b$. Observe that the inequality will change nothing if we interchange $ c$ and $ d$, so without loss of generality, we assume that $ c\leq d$, finally $ c+d-b\leq c \iff d\leq b$ we have known that $ a\leq c+d-b\leq c\leq d\leq b$.
Since $ \displaystyle f(c)+f(d)\leq f(c+d-b)+f(b)\iff \frac{f(b)-f(c)}{b-c}\ge \frac{f(d)-f(c+d-b)}{d-(c+d-b)}$, the equivalent inequality is obvious by convexity.
Exercise 9. Let $ A,B,C$ be angles of a triangle. Prove that $ \displaystyle \frac{\sin A}{A}+\frac{\sin B}{B}+\frac{\sin C}{C}\leq \frac{9\sqrt{3}}{2\pi}$.
My way.
We observe the ineqality $ \displaystyle \frac{\sin x}{x}\leq \left(\frac{\frac{\pi}{3}\cdot \frac{1}{2}-\frac{\sqrt{3}}{2}}{\left(\frac{\pi}{3}\right)^2}\right)\left(x-\frac{\pi}{3}\right)+\frac{3\sqrt{3}}{2\pi}$. I haven't rigorously checked its validity by calculus, at least it is true for $ x\in (0,\pi)$ with the aid of graph ploting, hence replacing $ x$ by respectively $ a,b,c$ and adding them up, we get desired result.
Exercise 10. Let $ f$ be a convex function on $ [a,b]$ and $ x,y,z\in [a,b]$. Prove by majorization inequality that $ \displaystyle f(x)+f(y)+f(z)+3f\left(\frac{x+y+z}{3}\right)\ge 2 \left(f\left(\frac{x+y}{2}\right)+f\left(\frac{y+z}{2}\right)+f\left(\frac{z+x}{2}\right)\right)$.
My way.
Correcting.
Exercise 3, 4, 7, 8 are skipped (I would not include these problems in my pdf), I am trying exercise 10.
Subscribe to:
Post Comments (Atom)
Hope you don't mind about this intrusion, but your solution to question 10 is wrong.
ReplyDelete1. For majorization, in definition we need both tuples to be in descending order. You can cheat a little bit by only requiring the part to be majorized to arrange in descending order, but nothing else - the way you arrange it is wrong (though the majorization of the tuples is actually correct.)
2. By letting g(x) that way, you are fixing y and z. That said, you should get terms like $latex f(2y+z/3)$ for example, which does not appear in the inequality.
Thank you, I made a big mistake.
ReplyDelete