Problem 1. Prove that for any a,b,c∈R, √a2+(1−b)2+√b2+(1−c)2+√c2+(1−a)2≥3√22.
Problem 2 (Mircea Lascu). Let a,b,c be positive real numbers such that abc=1. Prove that b+c√a+c+a√b+a+b√2≥√a+√b+√c+3.
Problem 3. Let a,b,c,x,y,z be positive real numbers such that x+y+z=1. Prove that ax+by+cz+2√(xy+yz+zx)(ab+bc+ca)≤a+b+c.
No comments:
Post a Comment