Problem 1. Prove that for any $ a,b,c\in\mathbb{R}$, $ \displaystyle \sqrt{a^2+(1-b)^2}+\sqrt{b^2+(1-c)^2}+\sqrt{c^2+(1-a)^2}\ge \frac{3\sqrt{2}}{2}.$
Problem 2 (Mircea Lascu). Let $ a,b,c$ be positive real numbers such that $ abc=1$. Prove that $ \displaystyle \frac{b+c}{\sqrt{a}}+\frac{c+a}{\sqrt{b}}+\frac{a+b}{\sqrt{2}}\ge \sqrt{a}+\sqrt{b}+\sqrt{c}+3.$
Problem 3. Let $ a,b,c,x,y,z$ be positive real numbers such that $ x+y+z=1$. Prove that $ \displaystyle ax+by+cz+2\sqrt{(xy+yz+zx)(ab+bc+ca)}\leq a+b+c.$
No comments:
Post a Comment