\( \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\P}{\mathcal P} \newcommand{\B}{\mathcal B} \newcommand{\F}{\mathbb{F}} \newcommand{\E}{\mathcal E} \newcommand{\brac}[1]{\left(#1\right)} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\matrixx}[1]{\begin{bmatrix}#1\end {bmatrix}} \newcommand{\vmatrixx}[1]{\begin{vmatrix} #1\end{vmatrix}} \newcommand{\lims}{\mathop{\overline{\lim}}} \newcommand{\limi}{\mathop{\underline{\lim}}} \newcommand{\limn}{\lim_{n\to\infty}} \newcommand{\limsn}{\lims_{n\to\infty}} \newcommand{\limin}{\limi_{n\to\infty}} \newcommand{\nul}{\mathop{\mathrm{Nul}}} \newcommand{\col}{\mathop{\mathrm{Col}}} \newcommand{\rank}{\mathop{\mathrm{Rank}}} \newcommand{\dis}{\displaystyle} \newcommand{\spann}{\mathop{\mathrm{span}}} \newcommand{\range}{\mathop{\mathrm{range}}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\innerr}[1]{\left\langle #1 \right \rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\toto}{\rightrightarrows} \newcommand{\upto}{\nearrow} \newcommand{\downto}{\searrow} \newcommand{\qed}{\quad \blacksquare} \newcommand{\tr}{\mathop{\mathrm{tr}}} \newcommand{\bm}{\boldsymbol} \newcommand{\cupp}{\bigcup} \newcommand{\capp}{\bigcap} \newcommand{\sqcupp}{\bigsqcup} \newcommand{\re}{\mathop{\mathrm{Re}}} \newcommand{\im}{\mathop{\mathrm{Im}}} \newcommand{\comma}{\text{,}} \newcommand{\foot}{\text{。}} \)

Saturday, February 13, 2010

Problems of today's MATH202 tutorial notes #15

Problem 3. Let $  \{a_n\}$ and $  \{b_n\}$ be two sequences such that $  \lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=c$, suppose $  f'(c)$ exists. Show that $  \displaystyle \lim_{n\to\infty}\frac{f(b_n)-f(a_n)}{b_n-a_n}=f'(c)$.

My way.
I have to put some restictions to ensure my deduction is correct. If $  f'(x)$ is continuous near $  c$, then we are done with the Mean Value Theorem. But it, first and foremost, requires $  f(x)$ to be differentiable.

To avoid continuity of derivative, we inevitably set Mean Value Theorem aside, then differentiability of $  f(x)$ other than $  c$ doesn't carry weight any more. But I have to suppose we always have $  \boxed{a_n<c<b_n}$ or $  \boxed{b_n<c<a_n}$ for sufficiently large $  n$, this assumption will be used later on. By the fact that the existence of first order derivative implies the existance of linear approximation near $  c$, we have for any $  x$ near $  c$, \[f(x)=f'(c)(x-c)+f(c)+o(x-c),
\] Here for any $  \epsilon >0$, there exists a $  \delta > 0$ such that $  \displaystyle 0<|x-c|<\delta \implies \left|\frac{o(x-c)}{x-c}\right|<\frac{\epsilon}{2}$.

While for any $\delta_0 >0$, there exists an $  N$ such that $  n>N\implies |b_n-c|, |a_n-c|<\delta_0$, we take $  \delta_0<\delta$, now for $  n>N$,\begin{align*}
&{\color{white}=}\left|\frac{f(b_n)-f(a_n)}{b_n-a_n}-f'(c)\right|\\
&=\left|\frac{f'(c)(b_n-c-(a_n-c))+o(b_n-c)+o(a_n-c)}{b_n-a_n}-f'(c)\right|\\
&=\left|\frac{o(b_n-c)+o(a_n-c)}{b_n-a_n}\right| \\
&\leq \left|\frac{o(b_n-c)}{b_n-c}\right|\left|\frac{b_n-c}{b_n-a_n}\right|+\left|\frac{o(a_n-c)}{a_n-c}\right|\left|\frac{a_n-c}{b_n-a_n}\right| \\
&<\left|\frac{o(b_n-c)}{b_n-c}\right|+\left|\frac{o(a_n-c)}{a_n-c}\right|\text{(by the assumption)}\\
&<\epsilon.
\end{align*}

Redo example 10. Show that $  \displaystyle 2<65^{1/6}<2+\frac{1}{192}$.

My way.
The left hand side is obvious. For the right hand side, observe that \[
65=2\left(1+\frac{1}{2^6}\right)^{\frac{1}{6}}<2\left(1+\frac{1}{6\cdot 2^6}\right)=2+\frac{1}{192}.
\] We have used $  (1+x)^\alpha \leq 1+\alpha x,\forall x\ge 0,\forall \alpha \in[0,1]$.

Problem 6. Let $  f:[0,\infty)\to\mathbb{R}$ be continuous and $  f(0)=0$. If $  |f'(x)|<|f(x)|$ for very $  x>0$, show that $  f(x)=0$, for every $  x\in[0,\infty)$.

My way.
Instead of considering $  [0,\frac{1}{2}]$, we can consider any interval $  [0,p]$, $  p<1$ first. It can be shown that by mean value theorem,\begin{align*}

|f(x)-f(0)|&<|f(y_n)||x|\\
&=|f(y_n)-f(0)||x|\\
&<|f(y_{n-1})||x||y_n|\\
&<\cdots \\
&<|x||y_n|\cdots |y_2||f(y_1)|\\
&<p^n|f(y_1)|,\forall x\in [0,p].
\end{align*} Letting $  n\to\infty$, we get $  f(x)=\inf\{p^n|f(y_1)|:n\in\mathbb{N}\}=0$. We can show by induction that $  f(x)=0$, for all $  x\in [(n-1)p,np],n\in\mathbb{N}$ in the same manner.

Problem 9. Give an example of a function that is differentiable on $  (0,1)$ and $  f(0)=f(1)$ but does not satisfy the Rolle's Theorem.

My way.
Define $  f(x)=\sqrt{x},\forall x\in[0,1)$ and $  f(1) = 0$.

Additional problem. Let $  f(x)$ be a differentiable on $  [a,b]$, $  f'(a)<f'(b),$ for any $  y_0\in (f'(a),f'(b))$, prove that there exists $  c\in(a,b)$ such that $  f'(c)=y_0$.

My way.
Since that $  f$ is differentiable cannot imply the continuity of $  f'$. Intermediate value theorem fails to work here. We on the contrary define a new continuous function, $  g(x) = f(x)-y_0 x$. It can be easily varified that $  g'(a)=f'(a)-y_0<0$ and $  g'(b)=f'(b)-y_0>0$, then extreme value cannot be attained at the end point, the minima must lie somewhere else in the interval $  (a,b)$, hence there exists $  c\in(a,b)$ such that $  g'(c)=0\implies f'(c)=y_0$.

No comments:

Post a Comment