\( \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\P}{\mathcal P} \newcommand{\B}{\mathcal B} \newcommand{\F}{\mathbb{F}} \newcommand{\E}{\mathcal E} \newcommand{\brac}[1]{\left(#1\right)} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\matrixx}[1]{\begin{bmatrix}#1\end {bmatrix}} \newcommand{\vmatrixx}[1]{\begin{vmatrix} #1\end{vmatrix}} \newcommand{\lims}{\mathop{\overline{\lim}}} \newcommand{\limi}{\mathop{\underline{\lim}}} \newcommand{\limn}{\lim_{n\to\infty}} \newcommand{\limsn}{\lims_{n\to\infty}} \newcommand{\limin}{\limi_{n\to\infty}} \newcommand{\nul}{\mathop{\mathrm{Nul}}} \newcommand{\col}{\mathop{\mathrm{Col}}} \newcommand{\rank}{\mathop{\mathrm{Rank}}} \newcommand{\dis}{\displaystyle} \newcommand{\spann}{\mathop{\mathrm{span}}} \newcommand{\range}{\mathop{\mathrm{range}}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\innerr}[1]{\left\langle #1 \right \rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\toto}{\rightrightarrows} \newcommand{\upto}{\nearrow} \newcommand{\downto}{\searrow} \newcommand{\qed}{\quad \blacksquare} \newcommand{\tr}{\mathop{\mathrm{tr}}} \newcommand{\bm}{\boldsymbol} \newcommand{\cupp}{\bigcup} \newcommand{\capp}{\bigcap} \newcommand{\sqcupp}{\bigsqcup} \newcommand{\re}{\mathop{\mathrm{Re}}} \newcommand{\im}{\mathop{\mathrm{Im}}} \newcommand{\comma}{\text{,}} \newcommand{\foot}{\text{。}} \)

Saturday, February 6, 2010

Last problem of MATH202 tutorial note #14

Problem. Consider a continuous function $  f$ on $  [a,b]$, suppose for any $  a\leq x\leq b$, there is $  a\leq y\leq b$, such that $  |f(y)|\leq \frac{1}{2}|f(x)|$. Prove that there is a $  c\in[a,b]$ such that $  f(c)=0$.

My way.
It is often easy to prove the converse to be impossible for this kind of problems. We on the contrary suppose that $  f(x)\neq 0,\forall x\in[a,b]$, then either $  f(x)>0$ or $  f(x)<0$ for all $  x\in[a,b]$.

We assume that $  f(x)>0$, due to continuity there exists $  x_0$ such that
$  (*):\qquad f(x)\ge f(x_0)>0, \forall x\in[a,b].$

However, we have the following observation.
$  \exists y_1\in [a,b], f(y_1)\leq \frac{1}{2}f(y_0)$;
$  \exists y_2\in [a,b], f(y_2)\leq \frac{1}{2}f(y_1)$;
$  \qquad \vdots$
$  \exists y_n\in [a,b], f(y_n)\leq \frac{1}{2}f(y_{n-1})$.

thus $  \displaystyle f(y_n)\leq \frac{1}{2}f(y_{n-1})\leq \left(\frac{1}{2}\right)^2f(y_{n-2})\leq \cdots \leq \left(\frac{1}{2}\right)^nf(y_0)$. Since right hand side tends to 0 as $  n\to\infty$, there exists an $  N$ such that $  n>N\implies f(y_n)<\epsilon < f(x_0)$, a contradiction with (*). The case that $  f(x)<0$ is essentially the same, hence there exists $  c\in[a,b]$ such that $  f(c)=0$.

Alternatively, if we know that any bounded sequence have a convergent subsequence, then this problem can be solved in a much neater way. As above we show that \[
|f(y_n)|\leq \frac{1}{2}|f(y_{n-1})|\leq \left(\frac{1}{2}\right)^2|f(y_{n-2})|\leq \cdots \leq \left(\frac{1}{2}\right)^n|f(y_0)|,\forall n \in \mathbb{N}\cup\{0\},
\] then since there exists a convergent subsequence $  \{y_{n_k}\}$ with $  \lim_{k\to\infty}y_{n_k}=c\in[a,b]$, thus taking limit on the proved inequality, we get \[
0\leq \lim_{k\to\infty}|f(y_{n_k})|=\left|f\left(\lim_{k\to\infty}y_{n_k}\right)\right| =|f(c)|\leq\lim_{k\to\infty}\left(\frac{1}{2}\right)^{n_k}|f(y_0)| = 0,
\] here we used the fact that a composite of continuous function is still continuous, we are done.

No comments:

Post a Comment